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PREFACE

The subject of system jdentification is too broad to be covered completely in one book. This document
is restricted to statistical system identification; that is, methods derived from probabilistic mathematical
statements of the problem. We will be primarily interested in maximum-1ikelihood and related estimators.
Statistical methods are becoming increasingly important with the proliferation of high-speed, general-purpose
digital computers. Problems that were once solved by hand-plotting the data and drawing a line through them
are now done by telling a computer to fit the best 1ine through the data (or by some completely different,
formerly impractical method). Statistical approaches to system identification are well=cuited to computer
application.

Automated statistical algorithms can solve more complicated problems more rapidly—and sometimes more
accurately—than the older manual methods. There is a danger, however, of the engineer's Tosing the intuitive
feel for the system that arises from long hours of working closely with the data. To use statistical estima-
tion algorithms effectively, the engineer must have not only a good grasp of the system under analysis. but
also a thorough understanding of the analytic tools used. The analyst must strive to understand how the
system behaves and what characteristics of the data influence the statistical estimators in order to evaluate
the validity and meaning of the results.

Our primary aim in this document is to provide the practicing data analyst with the background necessary
to make effective use of statistical system identification techniques, particularly maximum-1ikelihood and
related estimators. The intent is to present the theory in a manner that aids intuitive understanding at a
concrete level useful in application. Theoretical rigor has not been sacrificed, but we have tried to avoid
"elegant" proofs that may require three lines to write, but 3 years of study to comprehend the underlying
theory. In particular, such theoretically intriguing subjects as martingales and measure theory are ignored.
Several excellent volumes on these subjects are available, including Balakrishnan (1973), Royden (1968), Rudin
(1974), and Kushner (1971).

We assume that the reader has a thorough background in Tinear algebra and calculus (Paige, Swift, and
Slobko, 1974; Apostol, 1969; Nering, 1969; and Wilkinson, 1965), including complete familiarity with matrix
operations, vector spaces, inner products, norms, gradients, eigenvalues, and related subjects. The reader
should be familjar with the concept of function spaces as_types of abstract vector spaces (Luenberger, 1969),
but does not need expertise in functional analysis. We also assume familiarity with concepts of deterministic
dynamic systems (Zadeh and Descer, 1963; Wiberg. 1971; and Levan, 1983).

Chapter 1 introduces the basic concepts of system identification. Chapter 2 is an introduction to numeri-
cal optimization methods, which are important to system identification. Chapter 3 reviews basic concepts from
probability theory. The treatment is necessarily abbreviated, and previous familiarity with probability
theory is assumed.

Chapters 4-10 present the body of the theory. Chapter 4 defines the concept of an estimator and some of
the basic properties of estimators. Chapter 5 discusses estimation as a static problem in which time is not
involved. Chapter 6 presents some simple results on stochastic processes. Chapter 7 covers the state estima-
tion problem for dynamic systems with known coefficients. We first pose it as a static estimation problem,
drawing on the results from Chapter 5. We then show how a recursive formulation results in a simpler solution
process, arriving at the same state estimate. The derivation used for the recursive state estimator (Kalman
filter) does not tequire a background in stochastic processes; only basic probability and the results from
Chapter 5 are used.

Chapters 8-10 present the parameter estimation problem for dynamic systems. Each chapter covers one of
the basic estimation algorithms. We have considered parameter estimation as a problem in its own right, rather
than forcing it into the form of a nonlinear filtering problem. The general nonlinear filtering problem is
more difficult than parameter estimation for linear systems, and it requires ad hoe approximations for practi-
cal implementation. We feel that our approach is more natural and is easier to understand.

Chapter 11 examines the accuracy of the estimates. The emphasis in this chapter is on evaluating the

accuracy and analyzing causes of poor accuracy. The chapter also includes brief discussions about the roles
of model structure determination and experiment design.
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NOMENCLATURE

SYMBOLS

It is impractical to list all of the symbols used in this document. The following are symbols of partic-
ular significance and those used consistently in large portions of the document. In several specialized
situations, the same symbols are used with different meanings not included in this list.

A stability matrix

B control matrix

b(.) bias

¢ state observation matrix

D control observation matrix

E{.} expected value

e error vector

F(.) system function

FF* process noise covariance matrix
Fx(.) probability distribution function of x
f(.) system state function

GG* measurement noise covariance matrix
a(.) system observation function

h{.) equation error function

J(.) cost function

M Fisher information matrix

mE prior mean of §

ni,n(t) process noise vector

P prior covariance of &, or covariance of filtered x
p(x) probability density function of x, short notation
px(.) probability density function of x, full nhotation

Q covariance of predicted x

R covariance of innovation

t time

1} system input

ui,u(t) dynamic system input vector

Vi concatenated innovation vector
v innovation vector
X parameter vector in static models

x:.x(t) dynamic system state vector
z system response
Zj concatenated response vector

zi,z(t) dynamic system response vector

A sample interval
n; measurement noise vector
[ state transition matrix

ix



¥ input transition matrix

£ vector of unknown parameters

g set of possible parameter values

w random noise vector

Q probability space

- predicted estimate (in filtering contexts)

- optimum (in optimization contexts), or estimate (in estimation contexts), or filtered estimate (in
filtering contexts)

- smoothed estimate

Subscript £ indicates dependence on ¢

Abbreviations and acronyms

arg max value of x that maximizes the following function
X

corr correlation

cov covariance

exp exponential

In natural logarithm

MAP maximum a posteriori probability
MLE maximum-1ikelihood estimator

mse mean-square error

var variance

Mathematical notation

f(.) the entire function f, as opposed to the value of the function at a particular point

= transpose

Yy gradien@ with respect to thg vector x (result is a row vector when the operand is a scalar, or a
matrix when the operand is a column vector)

V$ second gradient with respect to x

by series summation

n sevies product

w 3.14159...

U set union

n set intersection

c subset

€ element of a set

{x:c} the set of all x such that condition ¢ holds

(v99) inner product

| conditioned on (in probability contexts)

|- absolute value or determinant
d|.| volume element
t] right-hand limit at t,

n-vector vector with n elements



L)

ith element of the vector x, or ith row of the matrix x

A Tower case subscript generally indicates an element of a sequence

xi



CHAPTER 1

1.0 INTRODUCTION

System identification is broadly defined as the deduction of system characteristics from measured data.
It is commonly referred to as an inverse problem because it is the opposite of the problem of computing the
response of a system with known characteristics. Gauss (1809, p. 85) refers to "the inverse problem, that is
when the true is to be derived from the apparent place." The inverse problem might be phrased as, "Given the
answer, what was the question?" Phrased in such general terms, system identification is seen as a simple
concept used in everyday life, rather than as an obscure area of mathematics.

Example 1.0-1 The system is your body, and the characteristic of interest is
its mass. You perform an experiment by placing the system on a mechanical
transducer in the bathroom which gives as output a position approximately
proportional to the system mass and the local gravitational field. Based on
previous comparisons with the doctor's scales, you know that your scale con-
sistently reads 2 1b high, so you subtract this figure from the reading. The
result is still somewhat higher than expected, so you step off of the scales
and then repeat the experiment. The new reading is more "reasonable" and from
it you obtain an estimate of the system mass.

This simple example actually includes several important principles of system identification; for instance,
the resulting estimates are biased (as defined in Chapter 4).

Example 1.0-2 The "guess your weight" booth at the fair.

The weight guesser's instrumentation and estimation algorithm are more difficult to describe precisely,
but they are used to solve the same system identification problem.

Example 1.0-3 Newton's deduction of the theory of gravity.

Newton's problem was much more difficult than the first two examples. He had to deduce not just a single
number, but also the form of the equations describing the system. Newton was a true expert in system identi-
fication (among other things).

As apparent from the above examples, system identification is as much an art as a science. This point is
often forgotten by scientists who prove elegant mathematical theorems about a model that doesn't adequately
represent the true system to begin with. On the other hand, engineers who reject what they consider to be
"ivory tower theory" are foregoing tools that could give definite answers to some questions, and hints to aid
in the understanding of others.

System identification is closely tied to control theory, partially by some common methodology, and par-
tially by the use of identified system models for control design. Before you can design a controller for a
system, you must have some notion of the equations describing the system.

Another common purpose of system identification is to help gain an understanding of how a system works.
Newton's investigations were more along this line, (It is unlikely that he wanted to control the motion of
the planets.)

The application of system identification techniques is strongly dependent on the purpose for which the
results are intended; radically different system models and identification techniques may be appropriate for
different purposes related to the same system. The aircraft control system designer will be unimpressed when
given a model based on inputs that cannot be influenced, outputs that cannot be measured, aspects of the
system that the designer does not want to control, and a complicated model in a form not amenable to control
analysis techniques. The same model might be ideal for the aerodynamicist studying the flow around the
vehicle. The first and most important step of any system identification application is to define its purpose.

Following this chapter's overview, this document presents one aspect of the science of system identifica-
tion—the theory of statistical estimation. The theory's main purpose is to help the engineer understand the
system, not to serve as a formula for consistently producing the required results. Therefore, our exposition
of the theory, although rigorously defensible, emphasizes intuitive understanding rather than mathematical
sophistication. The following comments of Luenberger (1969, p. 2) also apply to the theory of system
identification:

Some readers may look with great expectation toward functional analysis, hoping
to discover new powerful techniques that will enable them to solve important
problems beyond the reach of simpler mathematical analysis. Such hopes are
rarely realized in practice. The primary utility of functional analysis...is
its role as a unifying discipline, gathering a number of apparently diverse,
specialized mathematical tricks into one or a few geometric principles.

With good intuitive understanding, which arises from such unification, the reader will be better equipped to
extend the ideas to other areas where the solutions, although simple. were not formerly obvious.

The Titerature of the field often uses the terms "system identification,” "parameter identification," and
"parameter estimation" interchangeably. The following sections define and differentiate these broad terms.
The majority of the literature in the field, including most of this document, addresses the field most pre-
cisely called parameter estimation.
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1.1 SYSTEM IDENTIFICATION

We begin by phrasing the system identification problem in formal mathematical terms. There are three
elements essential to a system identification problem: a system, an experiment, and a response. We define
these elements here in broad, abstract, set-theoretic terms, before introducing more concrete forms in
Section 1.3.

Let U represent some experiment, taken from the set @ of possible experiments on the system.
U could represent a discrete event, such as stepping on the scales; or a value, such as a voltage applied.
U could also be a vector function of time, such as the motions of the control surfaces while an airplane is
flown through a maneuver. In systems terminology, U 1is the input to the system. (We will use the terms
“{nput," "control," and "experiment" more or less interchangeably.)

Observe the response Z of the system to the experiment. As with U, Z could be represented in many
forms including as a discrete event (e.g., "the system blew up") or as a measured time function. It is an
element of the set (@ of possible responses. (We also use the terms "output" or "measurement" for Z.)

The abstract system is a map (function) F from the set of possible experiments to the set of possible
responses.

F:o@ @ (1.1-1)
that is
Z = F(U) (1.1-2)

The system identification problem is to reconstruct the function F froma collection of experiments
Uj and the corresponding system responses Zj. This is the purest form of the "black box" identification
problem. We are asked to identify the system with no information at all about its internal structure, as if
the system were in a black box which we could not see into. Our only information is the inputs and outputs.

An obvious solution is to perform all of the experiments in @ and simply tabulate the responses. This
is usually impossible because the set is too large (typically, infinite). Also, we may not have complete
freedom in selecting the Uj. Furthermore, even if this approach were possible, the tabular format of the
result would generally be inconvenient and of 1ittle help in understanding the structure of the system.

If we cannot perform all of the experiments in (@), the system identification problem is imposcible
without further information. Since we have made no assumptions about the form of F, we cannot be sure of its
behavior without checking every point.

Example 1.1-1 The input U and output Z of a system are both represented
by real-valued scalar variables. When an input of 1.0 is applied, the output
is 1.0. When an input of =1.0 is applied, the output is also 1.0. Without
further information we cannot tell which of the following representations (or
an infinite number of others) of the system is correct.

a) 2=1 (independent of U)
1
z
03 0 1
u
b) Z = [U]
1
z
0
-1 0 1
c) Z=12 v
1
0
-1 [ 1

[V}
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d) The response depends on the time interval between applying U and
measuring Z, which we forgot to consider.

Example 1.1-2\ The input and output of a system are scalar time functions
on tEe interval (»,). When the input is cos(t), the output is sin(t).
Without more information we cannot distinguish among

a) z(t) = cos(t) independent of U

t
b) z(t) = [ u(s)d
) z2(t) j; (s)ds
c) z(t) = a(t)

d) z(t)=u(t-%1r)

Example 1.1-3 The input and output of a system are integers in the range
1-100. For every input except U = 37, we measure the output and find it
equal to the input. We have no mathematical basis for drawing any conclusion
about the response to the input U = 37. We could guess that the output might
be Z = 37, but there is no mathematical justification for this guess in the
problem as formulated.

Our inability to draw any conclusions in the above examples (particularly Example (1.1-3), which seems
so obvious intuitively) points out the inadequacy of the pure black-box statement of the system identification
problem. We cannot reconstruct the function F without some guidance on choosing a particular function from
the infinite number of functions consistent with the results of the experiments performed.

We have seen that the pure black box system identification problem, where absolutely no information is
given about the internal structure of the system, is impossible to solve. The information needed to construct
the system function F 1is thus composed of two parts: information which is assumed, and information which is
deduced from the experimental data. These two information sources can closely interact. For instance, the
experimental data could contradict the assumptions made, requiring a revision of the assumptions, or the data
could be used to select one of a set of candidate assumptions (hypotheses). Such interaction tends to obscure
the role of the assumption, making it ceem as though all of the information was obtained from the experimental
data, and thus has a purely objective validity. In fact, this is never the case. Realistically, most of the
information used for constructing the system function F will be assumptions based on knowledge of the nature
of the physical processes of the system. System identification technology based on experimental data is used
only to fill in the relatively small gaps in our knowledge of the system. From this perspective, we recognize
system identification as an extremely useful tool for filling in such knowledge gaps, rather than as a panacea
which will automatically tell us everything we need to know about a system. The capabilities of some modern
techniques may invite the view of system identification as a cure-all, because the underlying assumptions are
subtle and seldom explicitly stated.

Example 1.1-4 Return to the problem of example (1.1-3). Seemingly, not much
knowledge of the internal behavior of the system is required to deduce that

Z will be 37 when U is 37; indeed, many common system identification algo-
rithms would make such a deduction. In fact, the assumptions made are numer-
ous. The specification of the set of possible inputs and outputs already
implies many assumptions about the system; for instance, that there are no
transient effects, or that such effects are unimportant. The problem state-
ment does not allow for an event such as the system output's oscillating
through several values. We have also made an assumption of repeatability.
Perhaps the same experiment redone tomorrow would produce different results,
depending on some factor not considered. Encompassing all of the other
assumptions is the assumption of simplicity. We have applied Occam's Razor
and found the simplest system consistent with the data. One can easily
imagine useful systems that select specific inputs for special treatment.
Nothing in the data has eliminated such systems. We can see that the assump-
tions play the largest role in solving this problem. Granted the assumption
that we want the simplest consistent result, the deduction from the data that
Z=U is trivial.

Two general types of assumptions exist. The first consists of restrictions on the allowable forms of
the function F. Presumably, such restrictions would reflect the knowledge of what functions are reasonable
considering the physics of the system. The second type of assumption is some criterion for selecting a "best"
function from those consistent with the experimental results. In the following sections, we will see that
these two approaches are combined—restricting the set of functions considered, and then selecting a best
choice from this set.

1.2 PARAMETER IDENTIFICATION

For physical systems, information about the general form of the system function F can often be derived
from knowledge of the system. Specific numerical values, however, are sometimes prohibitively difficult to
compute theoretically without making unacceptable approximations. Therefore, the most widely used area of
system identification is the subfield called parameter identification.
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In parameter identification, the form of the system function is assumed to be known. This function con-
tains a finite number of parameters, the values of which must be deduced from experimental data.

Let £ be a vector with the unknown parameters as its elements. Then the system response Z is a known
function of the input U and the parameter vector &. We can restate this in a more convenient, but com-
pletely equivalent way. For each value of the parameter vector &, the system response Z 15 a known function
of the input U. (The function can be different for different values of £.) We say that the function is
parameterized by ¢ and write

Z=F_(U) (1.2-1)

The function Fg(U) is referred to as the assumed system model. The subscript notation for £ 1is used purely
for convenience to indicate the special role of &. The function could be equivalently written as F(g,U).
The parameter identification problem is then to deduce the value of & based on measurement of the responses
Zi to a set of inputs Uj. This problem of identifying the parameter vector & 1is much less ambitious than
the system identification problem of constructing the entire F function from experimental data; it is more
in line with the amount of information that reasonably can be expected to be obtained from experimental data.

Deducing the value of £ amounts to solving the following set of simultaneous and generally nonlinear
equations.

1. = FE(U') i=1,2,...N (1.2-2)
where N is the number of experiments performed. Note that the only variable in these equations is the param-
eter vector £. The Uj and Zi represent the specific input used and response measured for the ith experi-

ment. This is quite different from Equation (1.2-1) which expresses a general relationship among the three
variables U, Z, and &.

Example 1.2-1 In the problem of example (1.1-1), assume we are given that the
response is a linear function of the input

L= FE(U) +a, +a,l
The parameter vector is & = (a9,a;)*, the values of a, and a, being unknown.

We were given that U = -1 and U= +1 both result in Z = 1; thus Equa-
tion (1.2-2) expands to

1

1= FE(—I) =a -a

1= Fg(l) =a, ta;
This system is easy to solve and gives a, =1 and a, = 0. Thus we have
F(U) = 1 (independent of U).

Example 1.2-2 In the problem of example (1.1-2), assume we know that the sys-
tem can be represented as

2(t) = az(t) + bu(t)
or, equivalently, expressing Z as an explicit function of U,

t
Z=FU): z2(t) = J‘ (%) bue)ae

—co

The unknown parameter vector for this system is ¢ = (a,b)*. Since
u(t) = cos(t) resulted in 2z{t) = sin(t), Equation (1.2-2) becomes

sin(t) = It ) p cos(t)dt

for all te(-=,»). This equation is uniquely solved by a = 0" and b =-1.

Example 1.2-3 In the problem of Example (1.1-3), assume that the system can
be represented by a polynomial of order 10 or less.

10

2=F W) =2 oV

n=o
The unknown parameter vector is £ = (ao,al...alo)*. Using the experimental
data described in Example 1.6, Equation (1.2-2) becomes

10
i=y ai" i=1,2...36,38,39...100
n=o n
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This system of equations is uniquely solved by a, = 0, a, =1, and a,
through a,, all equalling 0.

As with any set of equations, there are three possible results from Equation (1.2-2). First, there can
be a unique solution, as in each of the examples above. Second, there could be multiple solutions, in which
case either more experiments must be performed or more assumptions would be necessary to restrict the set of
allowable solutions or to pick a best solution in some sense. The third possibility is that there could be no
solutions, the experimental data being inconsistent with the assumed equations. This situation will require a
basic change in our way of thinking about the problem. There will almost never be an exact solution with real
data, so the first two possibilities are somewhat academic. The remainder of the document, and Section 1.4 in
particular, will address the general situation where Equation (1.2-2) need not have an exact solution. The
possibilities of one or more solutions are part of the general case.

Example 1.2-4 1In the problem of Example (1.1-1), assume we are given that
the response is a quadratic function of the input

Z-= Fg(n) =a, +a,U+a,l?

The parameter vector is g = (a,,a,,3,)*. We were given that U = -1 and
U = +1 both result in Z = 1. With %hese data Equation (1.2-2) expands to

1

FE(-I) =a, -a +a,

1= Fg(l) =a, ta +ta,

From this information we can deduce that a, =0, but a, and a, are not
uniquely determined. The values might be determined by performing the
experiment U = 0. Alternately, we might decide that the lowest order
system consistent with the data available is preferred, giving a, =0
and a, = 1.

Example 1.2-5 In the problem of Example (1.1-1), assume that we are given
that the response is a linear function of the input. We were given that
U= -1 and U= +1 both result in Z = 1. Suppose that the experiment

U =0 1is performed and resylts in Z = 0.95. There are then no parameter
values consistent with the data.

1.3 TYPES OF SYSTEM MODELS

Although the basic concept of system modeling is quite general, more useful results can be obtained by
examining specific types of system models. Clarity of exposition is also improved by using specific models,
even when we can obtain the result in a more general context. This section describes some of the broad
classes of system model forms which are often used in parameter identification.

1.3.1 Explicit Function

The most basic type of system model is the explicit function. ‘The response Z 1is written as a known
explicit function of the input U and the parameter vector &£. This type of model corresponds exactly to
Equation (1.2-1):

Z-= FE(U) (1.2-1)
In the simplest subset of the explicit function models, the response is a linear function of the
parameter vector
Z = f(U)g (1.3-1)
In this equation, f(U) is a matrix which is a known function (nonlinear in general) of the input. This is the
type of model used in linear regression. Many systems can be put into this easily analyzed form, even though
the systems might appear quite complex at first glance.

A common example of a model linear in its parameters is a finite polynomial expansion of Z 1in terms
of U.

2=, +gU+ g%t g Ul {1.3-2)

In this case, f(U) is the row vector (1, U, U2...Un). Note that Z 1is linear in the parameters &, but
not in the input U.

1.3.2 State Space

State-space models are very useful for dynamic systems; that is, systems with responses that are time
functions. Wiberg (1971) and Zadeh and Desoer (1963) give general discussions of state-space models. Time
can be treated as either a continuous or discretized variable in dynamic models; the theories of discrete- and
continuous-~-time systems are quite different.



The general form for a continuous-time state-space model is

x(t,) = xq (1.3-3a)
x(t) = fIx(t),u(t),t,&] (1.3-3b)
z(t) = glx(t),u(t),t,&] (1.3-3c)

where f and g are arbitrary known functions. The jnitial condition x, can be known or can be a function
of £. The variable x(t) is defined as the state of the system at time t. Equation (1.3-3b) is called the
state equation, and (1.3-3c) is called the observation equation. The measured system response is z. The
state is not considered to be measured; it is an internal system variable. However, g[x{t),u{t),t,e] = x(t)
is a legitimate observation function, the measurement can be equal to the state if so desired.

Discrete-time state space models are similar to continuous-time models, except that the differential
equations are replaced by difference equations. The general form is

x(ty) = xp (1.3-4a)
(i) = fIx(t)ulty),tye]l 4 = 0.1, (1.3-4b)
z2(t;) = glx(ty),ulty),tye]l 1= 1.2, (1.3-4c)

The system variables are defined only at the discrete times tj.

This document is largely concerned with continuous-time dynamic systems described by differential Equa-
tions (1.3-3b). The system response, however, is measured at discrete time points, and the computations are
done in a digital computer. Thus, some features of both discrete- and continuous-time systems are pertinent.
The system equations are

x(ty) = %, (1.3-5a)
x(t) = flx(t),u(t),t,£) (1.3-5b)
z(ti) = g[x(t1),u(t1),t1,g] i= 1,2,... (1-3'5(:)

The response z(tj) is considered to be defined only at the discrete time points tj, although the state x(t)
is defined in continuous time.

We will see that the theory of parameter identification for continuous-time systems with discrete obser-
vations is virtually identical to the theory for discrete-time systems in spite of the superficial differences
in the system equation forms. The theory of continuous-time observations requires much deeper mathematical
background and will only be outlined in this document. Since practical application of the algorithms devel-
oped generally requires a digital computer, the continuous-time theory is of secondary importance.

An important subset of systems described by state space equations is the set of linear dynamic systems.
Although the equations are sometimes rewritten in forms convenient for different applications, all Tinear
dynamic system models can be written in the following forms: the continuous-time form is

x(ty) = x, (1.3-62)
x(t) = Ax(t) + Bu(t) (1.3-6b)
z(t) = Cx(t) + Du(t) (1.3-6c)

The matrix A is called the stability matrix, B is called the control matrix, and C and D are called state
and control observation matrices, respectively. The discrete-time form is

x(ty) = x, (1.3-7a)
x(t1+1) = ¢x(ti) + vu(ty) i=0,1,... (1.3-7b)
z(ti) = Cx(ti) + Du(ti) i=1,2,... (1.3-7¢)

The matrices ¢ and ¥ are called the system transition matrices. The form for continuous systems with dis-
crete observations is identical to Equation (1.3-6), except that the observation is defined only at the
discrete time points. In all three forms, A, B, C, D, ¢, and ¥ are matrix functions of the parameter
vector £. These matrices are functions of time in general, but for notational simplicity, we will not
explicitly indicate the time dependence unless it is important to a discussion.

The continuous-time and discrete-time state-equation forms are closely related. In many applications,
the discrete-time form of Equation (1.3-7) is used as a discretized approximation to Equation (1.3-6). In
this case, the transition matrices ¢ and ¥ are related to the A and B matrices by the equations

o = exp(Aa) (1.3-8a)

[
1

fA exp(At)dt B (1.3-8b)
0
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where

-t (1.3-8c)

We discuss this relationship in more detail in Section 7.5. In a similar manner, Equation (1.3-4) is sometimes
viewed as an approximation to Equation (1.3-3). Although the principle in the nonlinear case is the same as

in the linear case, we cannot write precise expressions for the relationship in such simple closed forms as in
the linear case.

Standardized canonical forms of the state-space equations (Wiberg, 1971) play an important role in some
approaches to parameter estimation. We will not emphasize canonical forms in this document. The basic theory
of parameter identification is the same, whether canonical forms are used or not. In some applications,
canonical forms are useful, or even necessary. Such forms, however, destroy any internal relationship between
the model structure and the system, retaining only the external response characteristics. Fidelity to the
internal as well as to the external system characteristics is a significant aid to engineering judgment and to
the incorporation of known facts about the system, both of which play crucial roles in system identification.
For instance, we might know the values of many locations of the A matrix in its "natural" form. When the
A matrix is transformed to a canonical form, these simple facts generally become unwieldy equations which
cannot reasonably be used. When there is 1ittle useful knowledge of the internal system structure, the use of
canonical forms becomes more appropriate.

1.3.3 Others

Other types of system models are used in various applications. Thic document will not cover them explic-
itly, but many of the ideas and results from explicit function and state space models can be applied to other
model types.

One of these alternate model classes deserves special mention because of its wide use. This is the class
of auto-regressive moving average (ARMA) models and related variants (Hajdasinski, Eykhoff, Damen, and van den
Boom, 1982). Discrete-time ARMA models are in the general form

z(ti) + a1z(t1-1) + ... anz(t. ) = bou(ti) +b,u(t

ion +obu(t, ) (1.3-9)

1-1)
Discrete-time ARMA models can be readily rewritten as linear state space models (Schweppe, 1973), so all of
the theory which we will develop for state space models is directly applicable.

1.4 PARAMETER ESTIMATION

The examples in Section 1.2 were carefully chosen to have exact solutions. Real data is seldom so
obliging. No matter how careful we have been in selecting the form of the assumed system model, it will not
be an exact representation of the system. The experimental data will not be consistent with the assumed model
form for any value of the parameter vector &. The model may be close, but it will not be exact, if for no
other reason than that the measurements of the response will be made with real, and thus imperfect,
instruments.

The theoretical development seems to have arrived at a cul-de-sac. The black box system identification
problem was not feasible because there were too many solutions consistent with the data. To remove this diffi-
culty, it was necessary to assume a model form and define the problem as parameter identification. With the
assumed model, however, there are no solutions consistent with the data.

We need to retain the concept of an assumed model structure in order to reduce the scope of the problem,
yet avoid the inflexibility of requiring that the model exactly reproduce the experimental data. We do this
by using the assumed model structure, but acknowledging that it is imperfect. The assumed model structure
should include the essential characteristics of the true system. The selection of these essential character=-
jstics is the most significant engineering judgment in system analysis. A good example is Gauss' (1809,

p. xi) justification that the major axis of a cometary ellipse is not an essential parameter, and that a
simplified parabolic model is therefore appropriate:

There existed, in point of fact, no sufficient reason why it should be taken
for granted that the paths of comets are exactly parabolic: on the contrary,
it must be regarded as in the highest degree improbable that nature should
ever have favored such an hypothesis. Since, nevertheless, it was known, that
the phenomena of a heavenly body moving in an ellipse or hyperbola, the major
axis of which is very great relatively to the parameter, differs very little
near the perihelion from the motion in a parabola of which the vertex is at
the same distance from the focus; and that this difference becomes the more
inconsiderable the greater the ratio of the axis to the parameter: and since,
moreover, experience has shown that between the observed motion and the motion
computed in the parabolic orbit, there remained differences scarcely ever
reater than those which might safely be attributed to errors of observation
?errors quite considerable in most cases): astronomers have thought proper to
retain the parabola, and very properly, because there are no means whatever of
ascertaining satisfactorily what, if any, are the differences from a parabola.

Chapter 11 discusses some aspects of this selection, including theoretical aids to making such judgments.

Given the assumed model structure, the primary question is how to treat imperfections in the model.
We need to determine how to select the value of & which makes the mathematical model the "best"
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representation of the essential characteristics of the system. We also need to evaluate the error in the
determination of £ due to the unmodeled effects present in the experimental data. These needs introduce
several new concepts. One concept is that of a "best" representation as opposed to the correct representation.
It is often impossible to define a single correct representation, even in principle, because we have acknowl-
edged the assumed model structure to be imperfect and we have constrained ourselves to work within this
structure. Thus & does not have a correct value. As Acton (1970) says on this subject,

A favorite form of lunacy among aeronautical engineers produces countless
attempts to decide what differential equation governs the motion of some
physical object, such as a helicopter rotor....But arguments about which
differential equation represents truth, together with their fitting calcu-
lations, are wasted time.

Example 1.4-1 Estimating the radius of the Earth. The Earth is not a per-
fect sphere and, thus, does not have a radius. Therefore, the problem of
estimating the radius of the Earth has no correct answer. Nonetheless, a
representation of the Earth as a sphere is a useful simplification for
many purposes.

Even the concept of the "best" representation overstates the meaning of our estimates because there is no
universal criterion for defining a single best representation (thus our quotes around "best"). Many system
identification methods establish an optimality criterion and use numerical optimization methods to compute the
optimal estimates as defined by the criterion; indeed most of this document is devoted to such optimal esti-
mators or approximations to them. To be avoided, however, is the common attitude that optimal (by some eri-
terion) is synonymous with correct, and that any nonoptimal estimator is therefore wrong. Klein (1975) uses
the term "adequate model" to suggest that the appropriate judgment on an identified model is whether the model
is adequate for its intended purpose.

In addition to these concepts of the correct, best, or adequate values of £, we have the somewhat related
issue of errors in the determination of £ caused by the presence of unmodeled effects in the experimental
data. Even if a correct value of £ 1is defined in principle, it may not be possible to determine this value
exactly from the experimental data due to contamination of the data by unmodeled effects.

We can now define the task as to determine the best estimate of & obtainable from the data, or perhaps
an adequate estimate of &, rather than to determine the correct value of &£. This revised problem is more
properly called parameter estimation than parameter identification. (Both terms are often used interchange-
ably.) Implied subproblems of parameter estimation include the definition of the criteria for best or
adequate, and the characterization of potential errors in the estimates.

Example 1.4-2 Reconsider the problem of example (1.2-5). Although there is
no linear model exactly consistent with the data, modeling the output as a
constant value of 1 appears a reasonable approximation and agrees exactly with
two of the three data points.

One approach to parameter estimation is to minimize the error between the model response and the actual
measured response, using a least squares or some similar ad hoc criterion. The values of the parameter
vector £ which result in the minimum error are called the best estimates. Gauss (1809, p. 162) introduced
this idea:

Finally, as all our observations, on account of the imperfection of the
instruments and of the senses, are only approximations to the truth, an
orbit based only on the six absolutely necessary data may still be liable to
considerable errors. In order to diminish these as much as possible, and
thus to reach the greatest precision attainable, no other method will be
given except to accumulate the greatest number of the most perfect observa-
tions, and to adjust the elements, not so as to satisfy this or that set of
observations with absolute exactness, but so as to agree with all in the
best possible manner.

This approach is easy to understand without extensive mathematical background, and it can produce excellent
results. It 15 restricted to deterministic models so that the model response can be calculated.

An alternate approach to parameter estimation introduces probabilistic concepts in order to take advan-
tage of the extensive theory of statistical estimation. We should note that, from Gauss's time, these two
approaches have been intimately linked. The sentence immediately following the above exposition in Theoria
Motus (Gauss, 1809, p. 162) is

For which purpose, we will show in the third section how, according to the
principles of the calculus of probabilities, such an agreement may be
obtained, as will be, if in no one place perfect, yet in all places the
strictest possible.

In the statistical approach, all of the effects not included in the deterministic system model are modeled as
random noise; the characteristics of the noise and its position in the system equations vary for different
applications. The probabilistic treatment solves the perplexing problem of how to examine the effect of the
unmodeled portion of the system without first modeling it. The formerly unmodeled portion is modeled proba-
bilistically, which allows description of its general characteristics such as magnitude and frequency content,
without requiring a detailed model. Systems such as this, which involve both time and randomness, are referred
to as stochastic systems. This document will examine a small part of the extensive theory of stochastic sys-
tems, which can be used to define estimates of the unknown parameters and to characterize the properties of

these estimates.
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Although this document will devote significant time to the treatment of the probabilistic approach, this
approach should not be overseld. It is currently popular to disparage model-fitting approaches as nonrigorous
and without theoretical basis. Such attitudes ignore two important facts: first, in many of the most common
situations, the "sophisticated" probabilistic approach arrives at the same estimation algorithm as the model-
fitting approaches. This fact is often obscured by the use of buzz words and unenlightening notation, appar-
ently for fear that the theoretical effort will be considered as wasted. Our view is that such relationships
should be emphasized and clearly explained. The two approaches complement each other, and the engineer who
understands both is best equipped to handle real world problems. The model-fitting approach gives good intui-
tive understanding of such problems as modeling error, algorithm convergence, and identifiability, among
others. The probabilistic approach contributes quantitative characterization of the properties of the esti-
mates (the accuracy), and an understanding of how these characteristics are affected by various factors.

The second fact ignored by those who disparage model fitting is that the probabilistic approach involves
just as many (or more) unjustified ad hoc assumptions. Behind the smug front of mathematical rigor and sophis-
tication lie patently ridiculous assumptions about the system. The contaminating noise seldom has any of the
characteristics (Gaussian, white, etc.) assumed simply in order to get results in a usable form. More basic is
the fact that the contaminating noise is not necessarily random noise at all. It is a composite of all of the
otherwise unmodeled portions of the system output, some of which might be "truly" random (deferring the
philosophical question of whether truly random events exist), but some of which are certainly deterministic
even at the macroscopic level. In light of this consideration, the "rigor" of the probabilistic approach is
tarnished from the start, no matter how precise the inner mathematics. Contrary to the impressions often
given, the probabilistic approach is not the single correct answer, but is one of the possible avenues that can
give useful results, making on the average as many unjustified or blatantly false assumptions as the alterna-
tives. Bayes (1736, p. 9), in an essay reprinted by Barnard (1958), made a classical statement on the role of
assumptions in mathematics:

It is not the business of the Mathematician to dispute whether quantities do
in fact ever vary in the manner that is supposed, but only whether the notion
of their doing so be intelligible; which being aliowed, he has a right to take
it for granted, and then see what deductions he can make from that supposi-
tion....He is not inquiring how things are in matter of fact, but supposing
things to be in a certain way, what are the consequences to be deduced from
them; and all that is to be demanded of him is, that his suppositions be
intelligible, and his inferences just from the suppositions he makes.

The demands on the applications engineer are somewhat different, and more in line with Bayes' (1736, p. 50)
later statement in the same document.

So far as Mathematics do not tend to make men more sober and rational thinkers,
wiser and better men, they are only to be considered as an amusement, which
ought not to take us off from serious business.

A few words are necessary in defense of the probabilistic approach, lest the reader decide that it is not
worthwhile to pursue. The main issue is the description of deterministic phenomena as random. This disagrees
with common modern perceptions of the meaning and use of randomness for physical situations, in which random
and deterministic phenomena are considered as quite distinct and well delineated. Our viewpoint owes more to
the earlier philosophy of probability theory—that it is a useful tool for studying complicated phenomena
which need not be inherently vandom (if anything is inherently random). Cramer (1946, p. 141) gives a classic
exposition of this philosophy:

[The following is descriptive of]...large and important groups of random
experiments. Small variations in the initial state of the observed units,
which cannot be detected by our instruments, may produce considerable changes
in the final result. The complicated character of the laws of the observed
phenomena may render exact calculation practically, if not theoretically,
impossible. Uncontrollable action by small disturbing factors may lead to
irregular deviations from a presumed "true value".

It is, of course, clear that there is no sharp distinction between these
various modes of randomness. Whether we ascribe e.g. the fluctuations observed
in the results of a series of shots at a target mainly to small variations in
the initial state of the projectile, to the complicated nature of the ballistic
laws, or to the action of small disturbing factors, is largely a matter of
taste. The essential thing is that, in all cases where one or more of these
circumstances are present, an exact prediction of the results of individual
experiments becomes impossible, and the irregular fluctuations characteristic
of random experiments will appear.

We shall now see that, in cases of this character, there appears amidst
all irregularity of fluctuations a certain typical form of regularity that
will serve as the basis of the mathematical theory of statistics.

The probabilistic methods allow quantitative analysis of the general behavior of these complicated phenomena,
even though we are unable to model the exact behavior.
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1.5 OTHER APPROACHES

Qur aim in this document is to present a unified viewpoint of the system identification ideas leading
to maximum-likelihood estimation of the parameters of dynamic systems, and of the application of these ideas.
There are many completely different approaches to identification of dynamic systems.

There are innumerable books and papers in the system identificatijon literature. Eykhoff (1974) and
Astrom and Eykhoff (1970) give surveys of the field. However, much of the work in system identification is
published outside of the general body of system identification literature. Many techniques have been devel-
oped for specific areas of application by researchers oriented more toward the application area than toward
general system identification problems. These specialized techniques are part of the larger field of system
jdentification, although they are usually not Tabeled as such. (Sometimes they are recognizable as special
cases or applications of more general results.) In the area most familiar to us, aircraft stability and con-
trol derivatives were estimated from flight data long before such estimation was classified as a system
identification problem {Doetsch, 1953; Etkin, 1958; Flack, 1959; Greenberg, 1951; Rampy and Berry, 1964;
Wolowicz, 1966; and Wolowicz and Holleman, 1958}.

We do not even attempt here the monumental task of surveying the large body of system identification
techniques. Suffice it to say that other approaches exist, some explicitly labeled as system identification
techniques, and some not so labeled. We feel that we are better equipped to make a useful contribution by
presenting, in an organized and comprehensible manner, the viewpoint with which we are most familiar. This
orientation does not constitute a dismissal of other viewpoints.

We have sometimes been asked to refute claims that, in some specific application, a simple technique such
as regression obtained superior results to a "sophisticated" technique bearing impressive-sounding credentials
as an optimal nonlinear maximum 1ikelihood estimator. The implication is that simple is somehow synonymous
with poor, and sophisticated is synonymous with good, associations that we compietely disavow. Indeed, the
opposite association seems more often appropriate, and we try to present the maximum 1ikelihood estimator in
a simple light. We believe that these methods are all tools to be used when they help do the job. We have
used quotations from Gauss several times in this chapter to illustrate his insight into what are still some of
the important issues of the day, and we will close the chapter with yet another (Gauss, 1809, p. 108):

...we hope, therefore, it will not be disagreeable to the reader, that, besides
the solution to be given hereafter, which seems to leave nothing further to be
desired, we have thought proper to preserve also the one of which we have made
frequent use before the former suggested itself to me. It is always profitable
to approach the more difficult problems in several ways, and not to despise the
good although preferring the better.
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CHAPTER 2

2.0 OPTIMIZATION METHODS

Most of the estimators in this book require the minimization or maximization of a nonlinear function.
Sometimes we can write an explicit expression for the minimum or maximum point. In many cases, however, we
must use an iterative numerical algorithm to find the solution. Therefore a background in optimization methods
is mandatory for appreciation of the various estimators.

Optimization is a major field in its own right and we do not attempt a thorough treatment or even a survey
of the field in this chapter. Our purpose is to briefly introduce a few of the optimization techniques most
pertinent to parameter estimation. Several of the conclusions we draw about the relative merits of various
algorithms are influenced by the general structure of parameter estimation problems and, thus, might not be
supportable in a broader context of optimizing arbitrary functions. Numerous books such as Rao (1979),
Luenberger (1969), Luenberger {1972), Dixon (1972}, and Polak (1971) cover the detailed derivation and analysis
of the techniques discussed here and others. These books give more thorough treatments of the optimization
methods than we have room for here, but are not oriented specifically to parameter estimation problems. For
those involved in the application of estimation theory, and particularly for those who will be writing computer
programs for parameter estimation, we strongly recommend reading several of these books. The utility and effi-
ciency of a parameter estimation program depend strongly on its optimization algorithms. The material in this
chapter should be sufficient for a general understanding of the problems and the kinds of algorithms used, but
not for the details of efficient application.

The basic optimization problem is to find the value of the vector x that gives the smallest or largest
value of the scalar-valued function J(x}. By convention we will talk about minimization problems; any maxi-
mization problem can be made into an equivalent minimization problem by changing the sign of the function. We
will follow the widespread practice of calling the function to be minimized a cost function, regardless of
whether or not it really has anything to do with monetary cost. To formalize the definition of the problem,

a function J(x) is said to have a minimum at X if

J(X) < I{x) (2.0-1)

for all x. This is sometimes called an unconstrained global minimum to distinguish it from local and con-
strained minima, which are defined below.

Two kinds of side constraints are sometimes placed on the problem. Equality constraints are in the form
gi(x) =0 (2.0-2)
Inequality constraints are in the form
hi(x) <0 (2.0-3)

The gj and hj are scalar-valued functions of x. There can be any number of constraints on a problem. A
value of x 1is called admissible if it satisfies all of the constraints; if a value violates any of the con-
straints it is inadmissible. The constraints modify the problem statement as follows: R 1is the constrained
minimum of J(x) if X is admissible and if Equation (2.0-1) holds for all admissible x.

Two crucial questions about any optimization problem are whether a solution exists and whether it is
unique. These questions are important in application as well as in theory. A computer program can spend a
long time searching for a solution that does not exist. A simple example of an optimization problem with no
solution is the unconstrained minimization of J(x) = x. A problem can also fail to have a solution because
there is no x satisfying the constraints. We will say that a problem that has no solution is ill-posed.

A simple problem with a nonunique solution is the unconstrained minimization of J{(x) = (x; - xz)z, where x
is a 2-vector.

A1l of the algorithms that we discuss (and most other algorithms) search for a local minimum of the func-
tion, rather than the global minimum. A local minimum (also called a relative minimum) is defined as follows:
x is a local minimum of J(x) if a scalar £ > 0 exists such that

J(X) < 3(x + h) (2.0-4)

for all h with |h| < e. To define a constrained local minimum, we must add the qualifications that X
and X + h satisfy the constraints. The term "extremum" refers to either a local minimum or a local maximum.
Figure (2.0-1) illustrates a problem with three local minima, one of which is the global minimum.

Note that if a global minimum exists, even if it is not unique, it is also a local minimum. The converse
to this statement is false; the existence of a local minimum does not even imply that a global minimum exists.

We can sometimes prove that a function has only one local minimum point, and that this point is also the
global minimum. When we lack such proofs, there is no universal way to guarantee that the Tocal minimum found
by an algorithm is the global minimum. A reasonable check for iterative algorithms is to try the algorithm
with many different starting values widely distributed within the realm of possible values. If the algorithm
consistently converges to the same starting point, that point is probably the global minimum. The cost of such
a test, however, is often prohibitively high.

The 1ikelihood of local minima difficulties varies widely depending on the application. In some applica-
tions we can prove that there are no local minima except at the unique global minimum. At the other extreme,
some applications are plagued by numerous local minima to the extent that most minimization algorithms are



12 2.0

worthless. Most applications lie between these extremes. We can often argue convincingly that a particular
answer must be the global minimum, even when rigorous proof is impractical.

The algorithms in this chapter are, with a few exceptions, iterative. Given some starting value x,, the
algorithms give a procedure for computing a new value x,; then x, is computed from x,, etc. The intent of
the iterative algorithms is to create a sequence xj that converges to the minimum. The starting value can
be from an independent estimate of a reasonable answer, or it can come from a special start-up algorithm. The
final step of any iterative algorithm is testing convergence. After the algorithm has proceeded for some time,
we need to choose among the following alternatives: 1) the algorithm has converged to a value sufficiently
close to the true minimum and should therefore be terminated; 2) the algorithm is making acceptable progress
toward the solution and should be continued; 3) the algorithm is failing to converge or is converging too
slowly to obtain a solution in an acceptable time, and it should therefore be abandoned; or 4) the algorithm
is exhibiting behavior that suggests that switching to a different algorithm (or modifying the current one)
might be productive. This decision is far from trivial because some algorithms can essentially stall at a
point far from any local minimum, making such small changes in xj that they appear to have converged.

We have briefly mentioned the problems of existence and uniqueness of solutions, local minima, starting
values, and convergence tests. These are major issues in practical application, but we will not examine them
further here. The references contain considerable discussion of these issues.

A cost function of an N-dimensional x vector can be visualized as a hypersurface in (N + 1)-dimensional
space. For illustrating the behavior of the various algorithms, we will use isocline plots of cost functions
of two variables. An isocline is the locus of all points in the x-space corresponding to some specified cost
function value. The isoclines of positive definite quadratic functions are always ellipses. Furthermore, a
quadratic function is completely specified by one of its isoclines and the fact that it is quadratic. Two-
dimensional examples are sufficient to illustrate most of the pertinent points of the algorithms.

We will consider unconstrained minimization problems, which illustrate the basic points necessary for our
purposes. The references address problems with equality and inequality constraints.

2.1 ONE-DIMENSIONAL SEARCHES

Optimization methodology is strongly influenced by whether or not x 1is a scalar. Because the optimiza-
tion problems in this book are generally multi-dimensional, the methods applicable only to scalar x are not
directly relevant.

Many of the multi-dimensional optimization algorithms, however, require the solution of one-dimensional
subproblems as part of the larger algorithm. Most such subproblems are in the form of minimizing the multi-
dimensional cost function with x constrained to a line in the multi-dimensional space. This has the super-
ficial appearance of a multi-dimensional problem, and furthermore one with the added complications of con-
straints. To clarify the one-dimensional nature of these subprobiems, express them as follows: the vector x
is restricted to a line defined by

X = Xy +OAXy (2.1-1)

where x, and x, are fixed vectors, and A 1is a scalar variable representing position along the line.
Restricted to this Tine, the cost can be written as a function of A.

g(1) = J(x, + ax,) (2.1-2)

The function g{r) is a scalar function of a scalar variable, and one-dimensional minimization algorithms apply
directly. Substituting the minimizing value of A into Equation (2.1-1) then gives the minimizing point along
the line in the space of «x.

We will not examine the one-dimensional search algorithms in this book. Several of the references have
good treatments of the subject. We will note that most of the relevant one-dimensional algorithms involve
approximating the function by a low-order polynomial based on the values of the function and its first and
second derivatives at one or more points. The minimum point of the polynomial, explicitly evaluated, replaces
one of the original points, and the process repeats. The distinguishing features of the algorithms are the
order of the polynomial, the number of points, and the order of the derivatives of J(x) evaluated. Variants
of the algorithms depend on start-up procedures and methods for selecting the point to be replaced.

In some special cases we can solve the one-dimensional minimization problems explicitly by setting the
derivative to zero, or by other means, even when we cannot explicitly solve the encompassing multi-dimensional
problem. Several of our examples of multi-dimensional algorithms will use explicit solutions of the one-
dimensional subproblems to avoid getting bogged down in detail. Real problems seldom will be so conveniently
amenable to exact solution of the one-dimensional subproblems, except where the multi-dimensional problem could
be directly solved without resort to iterative methods. Iterative one-dimensional searches are usually neces-
sary with any method that involves one-dimensional subproblems. We will encounter one of the rare exceptions
in the estimation of variance.

2.2 DIRECT METHODS

Optimization methods that do not require the evaluation of derivatives of the cost function are called
direct methods or zero-order methods (because they use up to zeroth order derivatives). These methods use
only the cost function values.

Axial iteration, also called the univariate method or coordinate descent, is the basis for many of the
direct methods. In this method we search along each of the coordinate directions of the x-space, one at a
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time. Starting with the point x,, fix the values of all but the first coordinate, reducing the problem to
one-dimensional minimization. Solve this problem using any one-dimensional algorithm. Call the resulting
point x,. Then fix the first coordinate at the value so determined and do a similar search along the direc-
tion of the second coordinate, giving the point x,. Continue these one-dimensional searches until each of the
N coordinate directions has been searched; the final point of this process is  xy.

The point xy completes the first cycle of minimization. Repeat this cycle starting from the point xy
instead of x,. Continue repeating the minimization cycle until the process converges (or until you give up,
which may we]? come first).

The performance of the axial iteration algorithm on most problems is unacceptably poor. The algorithm
performs well only when the minimum point along each axis is nearly independent of the values of the other
coordinates.

Example 2.2-1 Use axial iteration to minimize J(x,y) = A(x - y)? + B(x + y)?
with A >> B. The solution is the trivially obvious (0,0), but the problem

is good for illustrating the behavior of algorithms in a simple case. Instead
of using a one-dimensional search procedure, we will explicitly solve the one-
dimensional subproblems. For any fixed y, obtain the minimizing x coordi-

nate value by setting the derivative to zero

o J0y) = 2A(x - y) + 2B(x +y) = 0
giving

_A-B8
X*&a+BY

Similarly, for fixed x, the minimizing y value is

_.A-B
YER+B*

We see that for A >> B, the values of x and y descend slowly toward the true minimum at (0,0).
Figure (2.2-1) illustrates this behavior on an isocline plot. Note that if A = B (the cost function isocline
is circular) the exact minimum is obtained in one cycle, but as A/B increases the performance worsens.

Several modifications to the basic axial iteration method are available to improve its performance. Some
of these modifications exploit the notion of the pattern direction, the direction from the beginning point
XixN of a cycle to the end point X(1+1?xN of the same cycle. Figure (2.2-2) illustrates the pattern direc-
tion, which tends to point in the general direction of the minimum. Powell's method is the most powerful of
the direct methods that search along pattern directions. See the references for details.

2.3 GRADIENT METHODS

Optimization methods that use the first derivative (gradient) of the cost function are called gradient
methods or first order methods. Gradient methods require that the cost function be differentiable; most of the
cost functions considered in this book meet this requirement. The gradient methods generally converge in fewer
iterations than many of the direct methods because the gradient methods use more information in each iteration.
{There are exceptions, particularly when comparing simple-minded gradient methods with the most powerful of the
direct methods). The penalty paid for the generally improved performance of the gradient methods compared with
the direct methods is the requirement to evaluate the gradient.

We define the gradient of the function J(x) with respect to x to be the row vector. (Some texts define
it as a column vector; the difference is inconsequential as long as one is consistent.)

v,d(x) = [3731% -a)a(—N]J(x) (2.3-1)

A reasonable estimate of the computational cost of evaluating the gradient is N times the cost of evaluating
the function. This estimate follows from the fact that the gradient can be approximately evaluated by N
finite differences

2d(x) _ [J(x + eey) - I(x)]
ax, €

(2.3-2)

where ey 1s the unit vector along the xi axis and ¢ 1is a small number. In special cases, there can be
expressions for the gradient that cost significantly less than N function evaluations.

Equation (2.3-2) somewhat obscures the distinction between the gradient methods and the direct methods.
We can rewrite any gradient method in a finite difference form that does not explicitly involve gradients.
There is, nonetheless, a fairly clear distinction between methods derived from gradient ideas and methods
derived from direct search ideas. We will retain this philosophical distinction regardless of whether the
gradients are evaluated explicitly or by finite differences.

The method of steepest descent (also called the gradient method) involves a series of one-dimensional
searches, as did the axial-iteration method and its variants. In the steepest-descent method, these searches
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are along the direction of the negative of the gradient vector, evaluated at the current point. The one-
dimensional problem is to find the value of 1 that minimizes

Ji(x) = J(xi + xsi) (2.3-3)
where sj is the search direction given by

_ *
s; = —VXJ(X){X=X1 (2.3-4)

The negative of the gradient is the direction of steepest local descent of the cost function (thus the
name of the method). To prove this property, first note that for any vector s we have

d - *
o J(x + As) <5,de(x)> (2.3-5)

We are using the (.,.) notation for the inner product

(X,y) = x*y (2.3-6)
Fquation (2.3-5) is a generalization of the definition of the gradient; it applies in spaces where Equa-
tion (2.3-1) is not meaningful. We then need only show that, if s is restricted to be a unit vector,
Equation (2.3-5) is minimized by choosing s in the direction of —v;d(x). This follows immediately from the
Cauchy-Schwartz inequality (Luenberger, 1969) of linear algebra.

Theorem 2.3-1 (Cauchy-Schwartz) (x,y>? < |x|?|y|? with equality if and only if x =ay for
some scalar a.

Proof The theorem is trivial if y = 0. For y # 0 examine
(X AYLX +AY) = (X)) + AKY,y) + 20(X,y) 2 0 (2.3-7)
Choose
A= = OGYMCYLY) (2.3-8)
Substitute into Equation (2.3-7) and rearrange to give
LYY < (XLXYLY) = %] 2y]? (2.3-9)

Equality holds if and only if x + Ay = 0 in Equation (2.3-7), which will be
true if and only if x = ay (» will then be -a).

On the surface, the steepest descent property of the method seems to imply excellent performance in mini-
mizing the cost function value. The direction of steepest descent, however, is a local property which might
point far from the direction of the global minimum. It is thus often a poor choice of search direction.
Direct methods such as Powell's often converge more rapidly than steepest descent.

The steepest descent method performs worst in long narrow valleys of the cost function. It is also sensi-
tive to scaling. These two difficulties are closely related; rescaling a problem can easily create long
narrow valleys. The following examples illustrate the scaling and valley difficulties:

Example 2.3-1 Let the cost function be

Ix) = 3 (24 xd)
The steepest descent method works excellently for this cost function (so does
almost every optimization method). The gradient of J(x) is

de(x) = (x,,X,) = x*

Therefore, from any starting point, the negative of the gradient points
exactly at the origin, which is the global minimum. The minimum will be
attained exactly (or to the accuracy of the one-dimensional search methods
used) in one iteration. Figure (2.3-1) illustrates the algorithm starting
from the point (1,1)*.

Example 2.3-2 Rescale the preceding example by replacing x; by 0.1x,.
{Perhaps we just redefined the units of x; to be millimeters instead of
centimeters.) The cost function is then

J(x) = % (0.01x% + x2)
and the gradient is

de(x) = (0.01x,,x,)

Figure (2.3-2) shows the search direction used by the algorithm starting from
the point (10,1)*, which corresponds to the point (1,1)* in the previous
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example. The search direction points almost 90° from the origin. A careless
glance at Figure (2.3-2) invites the conclusion that the minimum in the
search direction will be on the x axis and thus that the second iteration
of the steepest descent algorithm will attain the minimum. It is true that
the minimum is close to the x axis, but it is not exactly on the axis; the
distinction makes an important difference in the algorithm's performance.

For points x - Av3J(x) along the search direction from any point
(x1,%,)*, the cost function is

g(r) = f(x - AV;J(x)) = %«[O.lei(l - 0.013)% + x2(1 - a)2]

The minimum of g()) is at

(0.0l)zxi + X

NN NN

(0.01)%x2 + x

and thus the minimum point along the search direction is

(xy = 0.01x,4% , X, - x,)*

with X defined as above. The following table and Figure (2.3-3) show
several iterations of this process starting from the point (10,1)*.

Iteration Xy X,

0 10 1

1 9.899 -.009899
2 4.900  .4900

3 4.851 -.004851
4 2.401  .2401

5 2.377 -.002377
6 1.176  .1176

7 1.165 -.001165

The trend of the algorithm is clear; every two iterations it moves essentially
halfway to the solution. Consider the behavior starting from the point
(10,0.1)* instead of (10,1)*:

Iteration Xy X,

0 10 0.1

1 9.802 -.09802
2 9.608 .09608
3 9.418 -.09418
4 9.231 .09231
5 9.048 -.09048
6 8.869  .08869
7 8.694 -.08694

This behavior, plotted in Figure (2.3-4), is abysmal. The algorithm is bounc-
ing back and forth across the valley, making 1ittle progress toward the
minimum.

Several modifications to the steepest descent method are available to improve its performance. A rescaling
step to eliminate valleys caused by scaling yields major improvements for some problems. The method of paral-
lel tangents (PARTAN method) exploits pattern directions similar to those discussed in Section 2.2; searches in
such pattern directions are often called acceleration steps. The conjugate gradient method is the most power-
ful of the modifications to steepest descent. The references discuss these and other gradient algorithms in
detail.

2.4 SECOND ORDER METHODS
Optimization methods that use the second derivative (or an approximation to it) of the cost .function are

called second order methods. These methods require that the first and second derivatives of the cost function
exist.

2.4.1 Newton-Raphson

The Newton-Raphson optimization algorithm (also called Newton's method) is the basis for all of the second
order methods. The idea of this algorithm is to approximate the cost function by the first three terms of its
Taylor series expansion about the current point.
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Ji(x) = 3{xg) + (x - x)'vd(x) + 3 (x - X200 (x - %) (2.4-1)

From a geometric viewpoint, this equation describes the paraboloid that best approximates the function near
xj. Equating the gradient of J;{x) to zero gives an equation for the minimum point of the approximating
function. Taking this gradient, note that vyJ(xj) and v%J{xj) are evaluated at the fixed point x; and
thus are not functions of x.

v, Jd.(x) = VxJ(xi) + (x - xi)*[vid(xi)] =0 (2.4-2)

The solution is

X = X5 - [vid(xi)]'lv;J(xi) (2.4-3)

If the second gradient of J is positive definite, then Equation (2.4-3) gives the exact unique minimum of
the approximating function; it is a reasonable guess at an approximate minimum of the original function. If
the second gradient is not positive definite, then the approximating function does not have a unique minimum
and the algorithm is 1ikely to perform poorly. The Newton-Raphson algorithm uses Equation (2.4-3) iteratively;
the x from this equation is the starting point for the next iteration. The algorithm is

Xear = Xq 7 [0 (xg) (2.4-4)

The performance of this algorithm in the close neighborhood of a strict Tocal minimum is unexcelled; this
performance represents an ideal toward which other algorithms strive. The Newton-Raphson algorithm attains
the exact (except for numerical round-off errors) minimum of any positive-definite quadratic function in a
single iteration. Convergence within 5 to 10 iterations is common on some practical nonquadratic problems
with several dozen dimensions; direct and gradient methods typically count iterations in hundreds and thousands
for such problems and settle for less accurate answers. See the references for analysis of convergence
characteristics.

Three negative features of the Newton-Raphson algorithm balance its excellent convergence near the mini-
mum. First is the behavior of the algorithm far from the minimum. If the initial estimate is far from the
minimum, the algorithm often converges erratically or even diverges. Such problems are often associated with
second gradient matrices that are not positive definite. Because of this problem, it is common to use special
start-up procedures to get within the area where Newton-Raphson performs well. One such procedure is to start
with a gradient method, switching to Newton-Raphson near the minimum. There are many other start-up proce-
dures, and they play a key role in successful applications of the Newton-Raphson algorithm.

The second negative feature of the Newton-Raphson method is the computational cost and complexity of eval-
uating the second gradient matrix. The magnitude of this difficulty varies widely among applications. In some
special cases the second gradient is little harder to compute than the first gradient; Newton-Raphson, perhaps
with a start-up procedure, is a good choice for such applications. If, at the other extreme, you are reduced
to finite-difference computation of the second gradient, Davidon-Fletcher-Powell (Section 2.4.4) is probably
a more appropriate algorithm. In evaluating the computational burden of Newton-Raphson and other methods,
remember that Newton-Raphson requires no one-dimensional searches. Equation (2.4-4) constitutes the entire
algorithm. The one-dimensional searches required by most other algorithms can account for a majority of their
computational cost.

The third negative feature of the Newton-Raphson algorithm is the necessity to invert the second gradient
matrix (or at least to solve the set of linear equations involving the matrix). The computer time required
for the inversion is seldom an issue; this time is typically small compared to the time required to evaluate
the second gradient. Furthermore, the algorithm converges quickly enough that if one linear system solution
per iteration is a large fraction of the total cost, then the total cost must be low, even if the Tinear system
is on the order of 100-by-100. The crucial issue concerning the inversion of the second gradient is the possi-
bility that the matrix could be singular or ill-conditioned. We will discuss singularities in Section 2.4.3.

2.4.2 Invariance

The Newton-Raphson algorithm has far less difficulty with long narrow valleys of the cost function than
does the steepest-descent method. This difference is related to an invariance property of the Newton-Raphson
algorithm. Invariance of minimization algorithms is a useful concept which many texts mention briefly, if at
all. We will therefore elaborate somewhat on the subject.

The examples in the section on steepest descent illustrate a strong link between scaling and narrow
valleys. Scaling changes can easily create such valleys. Therefore we can generally state that minimization
methods that are sensitive to scaling changes are Tikely to behave poorly in narrow valleys.

This reasoning suggests a simple criterion for evaluating optimization algorithms: a good optimization
algorithm should be invariant under scaling changes. This principle is almost so self-evident as to be
unworthy of mention. The user of a program would be justifiably disgruntled if an algorithm that worked in
the English Gravitational System (Imperial System) of units failed when applied to the same problem expressed
in metric units (or vice versa). Someone trying to duplicate reported results would be perplexed by data
published in metric units which could be duplicated only by converting to English Gravitational System units,
in which the computation was really done. Nonetheless, many common algorithms, including the steepest descent
method, fail to exhibit invariance under scaling.

The criterion is neither necessary or sufficient. It is easy to construct ridiculous algorithms that are
invariant to scale changes (such as the algorithm that always returns the value zero), and scale-sensitive algo-
rithms 1ike the steepest descent method have achieved excellent results in some applications. It is safe to
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state, however, that you can usually improve a good scale-sensitive algorithm by making it scale-invariant.
An initial step that rescales the problem can effectively make the steepest-descent method scale-invariant
(although such a step destroys a different invariance property of the steepest-descent method: invariance
under rotation of coordinates). Rescaling a problem can be done manually by the user, or it can be an auto-
matic part of an algorithm; automatic rescaling has the obvious advantage of being easier for the user, and a
secondary advantage of allowing dynamic scaling changes as the algorithm proceeds.

We can extend the idea of invariance beyond scale changes. In general, we would Tike an algorithm to be
invariant under the largest possible set of transformations. A justification for this criterion is that
almost any complicated minimization problem can be expressed as some transformation (possibly quite compli-
cated) of a simpler problem. We can sometimes use such transformations to simplify the solution of the origi-
nal problems. Often it is more difficult to do the transformation than to solve the original optimization
problem. Even if we cannot do the transformations, we can use the concept to conclude that an optimization
algorithm invariant over a large class of transformations is likely to work on a large class of problems.

The Newton-Raphson algorithm is invariant under all invertible linear transformations. This is the widest
invariance property that we can usually achieve.

The scale-invariance of the Newton-Raphson algorithm can be partially nullified by poor choice of matrix
inversion (or linear system solution) algorithms. We have assumed exact arithmetic in the preceding discussion
of scale-invariance. Some matrix inversion routines are sensitive to scaling effects. Inversion based on
Cholesky factorization (Wilkinson, 1965, and Acton, 1970) is a good, easily implemented method for symmetric
matrices (the second gradient is always symmetric), and is insensitive to scaling. Alternatively, we can pre-
scale the matrix by using its diagonal elements.

2.4.3 Singularities

The second gradient matrix used in the Newton-Raphson algorithm is positive definite in a region near a
strict local minimum. Ideally, the start-up procedure will reach such a region, and the Newton-Raphson algo-
rithm will then converge without needing to contend with singularities. This viewpoint is overly optimistic;
singular or ill-conditioned matrices (the difference is largely academic) arise in many situations. In the
following discussion, we discount the effects of scaling. Matrices that have large condition numbers because
of scaling do not represent intrinsically i11-conditioned problems, and do not require the techniques dis-
cussed in this section.

In some situations, the second gradient matrix is exactly singular for all values of x; two columns (and
rows) are identical or a column {and corresponding row) is zero. These simple singularities occur regularly
even in complex nonlinear problems. They often result from errors in the problem formulation, such as minimiz-
ing with respect to a parameter that is irrelevant to the cost function.

In the more general case, the second gradient is singular (or i11-conditioned) at some points but not at
others. Whenever we use the term singular in the following discussion, we jmplicitly mean singular or i11-
conditioned. Because of this definition, there will be vaguely defined regions of singularity rather than
isolated points. The consequences of singularities are different depending on whether or not they are near
the minimum.

Singularities far from the minimum pose no basic theoretical difficulties. There are several practical
methods for handling such singularities. One method is to use a gradient algorithm (or any other algorithm
unaffected by such singularities) until x 1is out of the region of singularity. We can also use this method
if the second gradient matrix has negative eigenvalues, whether the matrix is ill-conditioned or not. If the
matrix has negative eigenvalues, the Newton-Raphson algorithm is likely to behave poorly. (It could even con-
verge to a local maximum.) The second gradient is always positive semi-definite in a region around a local
minimum, so negative eigenvalues are only a consideration away from the minimum.

Another method of handling singularities is to add a small positive definite matrix to the second gradient
before inversion. We can also use this method to handle negative eigenvalues if the added matrix is large
enough. This method is closely related to the previous suggestion of using a gradient algorithm. If the added
matrix is a large constant times an identity matrix, the Newton-Raphson algorithm, so modified, gives a small
step in the negative gradient direction. For small constants, the algorithm has characteristics between those
of steepest descent and Newton-Raphson. The computational cost of this method is high; in essence, we are
getting performance like steepest descent while paying the computational cost of Newton-Raphson. Even small
additions to the second derivative matrix can dramatically change the convergence behavior of the Newton-
Raphson algorithm. We should therefore discontinue this modification when out of the region of singularity.
The advantage of this method is its simplicity; excluding the test of when the matrix is il1-conditioned, this
modification can be done in two short Tines of FORTRAN code.

The last method is to use a pseudo-inverse (rank-deficient solution). Penrose (1955), Aoki (1967),
Luenberger (1969), Wilkinson and Reinsch (1971), Moler and Stewart (1973), and Garbow, Boyle, Dongarra, and
Moler (1977) discuss pseudo-inverses in detail. The basic idea of the pseudo-inverse method is to ignore the
directions in the x-space corresponding to zero eigenvalues (within some tolerance) of the second gradient.

In the parameter estimation context, such directions represent parameters, or combinations of parameters, about
which the data give 1ittle information. Lacking any information to the contrary, the method leaves such param-
eter combinations unchanged from their initial values.

The pseudo-inverse method does not address the problem of negative eigenvalues, but it is popular in a
large class of applications where negative eigenvalues are impossible. The method is easy to implement, being
only a rewrite of the matrix-inversion or linear-system-solution subroutine. It also has a useful property
absent from the other proposed methods; it does not affect the Newton-Raphson algorithm when the matrix is
well-conditioned. Therefore one can freely apply this method without testing whether it is needed. (1t is
true that condition tests in some form are part of a pseudo-inverse algorithm, but such tests are at a lower
level contained within the pseudo-inverse subroutine.)
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Singularities near the minimum require special consideration. The excellent convergence of Newton-
Raphson near the minimum is the primary reason for using the algorithm. If we significantly slow the conver-
gence near the minimum, there is Tittle argument for using Newton-Raphson. The use of a pseudo-inverse canh
handle singularities while maintaining the excellent convergence; the pseudo-inverse is thus an appropriate
tool for this purpose.

Although pseudo-inverses handle the computational problems, singularities near the minimum also raise
theoretical and application issues. Such a singularity indicates that the minimum point is poorly defined.
The cost function is essentially flat in at least one direction from the minimum, and the minimum value of the
cost function might be attained to machine accuracy by widely separated points. Although the algorithm con-
verges to a minimum point, it might be the wrong minimum point if the minimum is flat. 1If the only goal is to
minimize the cost function, any minimizing point might be acceptable. In the applications of this book, mini-
mizing the cost function is only a means to an end; the desired output is the value of x. If multiple solu-
tions exist, the problem statement is incomplete or faulty.

We strongly advise avoiding the routine use of pseudo-inverses or other computational machinations to
“solve" uniqueness problems. If the basic problem statement is faulty, no numerijcal trick will solve it. The
pseudo-inverse works by changing the problem statement of the inversion, adding the stipulation that the
inverse have minimum norm. The interpretation of this stipulation is vague in the context of the optimization
problem {unless the cost function is quadratic, in which case it specifies the solution nearest the starting
point). If this stipulation is a reasonable addition to the problem statement, then the pseudo-inverse is an
appropriate tool. This decision can have significant effects. For a nonquadratic cost function, for example,
there might be large differences in the solution point, depending on small changes in the starting point, the
data, or the algorithm.

The pseudo-inverse can be a good diagnostic tool for getting the information needed to revise the problem
statement, but one should not depend upon it to solve the probiem autonomously. The analyst's strong point is
in formulating the problem; the computer's strength is in crunching numbers to arrive at the solution. A
failure in either role will compromise the validity of the solution. This statement is but a rephrasing of
the computer cliche "garbage in, garbage out," which has been said many more times than it has been heard.

2.4.4 Quasi-Newton Methods

Quasi-Newton methods are intended for problems where explicit evaluation of the second gradient of the
cost function is complicated or costly, but the performance of the Newton-Raphson algorithm is desired. These
methods form approximations to the second-gradient matrix using the first-gradient values from several itera-
tions. The approximation to the second gradient then substitutes for the exact second gradient in Equa-
tion (2.4-4). Some of the methods directly form approximations of the inverse of the second-gradient matrix,
avoiding the cost and some of the problems of matrix inversion.

Note that as long as the approximation to the second-gradient matrix is positive definite, Equa-
tion (2.4-4) can never converge to any point with a nonzero first gradient. Therefore approximations to the
second gradient, no matter how poor, cannot affect the solution point. The approximations can greatly change
the speed of convergence and the area of acceptable starting values. Approximations to the first gradient
would affect the solution point as well.

The steepest descent method can be considered as the crudest of the quasi-Newton methods, using a constant
times the identity matrix as the approximation to the second gradient. The performance of the quasi-Newton
methods approaches that of Newton-Raphson as the approximation to the second gradient improves. The
Davidon-Fletcher-Powell method (variable metric method) is the most popular quasi-Newton method. See the
references for discussions of these methods.

2.5 SUMS OF SQUARES

The algorithms discussed in the previous sections are generally applicable to any minimization problem.
By tailoring algorithms to special characteristics of specific problem classes, we can often achieve far
better performance than by using the general purpose algorithms.

Many of the cost functions arising in estimation problems have the form of sums of squares. The general
sums-of-squares form is

N
I(x) = 3 IF 0T ()] (2.5-1)

i=1

The f; are vector-valued functions of x, and the Wj are weightings. To simplify some of the formulae,

we assume that the Wi are symmetric. This assumption does not really restrict the application because we can
always substitute 1/2(W; + w?) for a nonsymmetric W; without changing the function values. In most appli-
cations, the W; are positive semi-definite; this is not a requirement, but we will see that it helps ensure
that the stationary points encountered are local minima. The form of Equation (2.5-1) is common enough to
merit special study.

The summation sign in Equation (2.5-2) is somewhat superfluous in that any function in the form of Equa-
tion (2.5-1) can be rewritten in an equivalent form without the summation sign. This can be done by concate-
nating the N different f;(x) vectors into a single, longer f(x) vector and making a corresponding large
W matrix with the Wj matrices on diagonal blocks. The only difference is in the notation. We choose the
longer notation with the summation sign because it more directly corresponds with the way many parameter
estimation problems are naturally phrased.
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Several of the algorithms discussed in the previous two sections work well with the form of Equa-
tion {2.5-1). For any reasonable fj functions, Equation (2.5-1) defines a cost function that is well-
approximated by quadratics over fairly large regions. Since many of the general minimization schemes are
based on quadratic approximations, application of these schemes to Equation (2.5-1) is natural. This statement
does not imply that there are never problems minimizing Equation (2.5-1); the problems are sometimes severe,
but the odds of success with reasonable effort are much better than they are for arbitrary cost function forms.
Although the general methods are usable, we can exploit the problem structure to do better.

2.5.1 Linear Case

If the f; functions in Equation (2.5-1) are linear, then the cost function is exactly quadratic and we
can express the minimum point in closed form. In particular, let the f; be the arbitrary linear functions

fi(x) = Aix + bi (2.5-2)

Equation (2.5-1) then becomes

N
I(x) = :E:[Aix + b T4 [Ax + b.] (2.5-3)

i=1

Equating the gradient of Equation (2.5-3) to zero gives

N
2 :E:[Aix + b THAL = 0 (2.5-4)
i=1
Solving for x gives
N I N
X = - :E: RAWA . AXHb. (2.5-5)
i=1 1=1

assuming that the inverse exists.

If the inverse exists, then Equation (2.5-5) gives the only stationary point of Equation (2.5-3)., This
stationary point must be a minimum if all the W; are positive semi-definite, and it must be a maximum if all
the Wi are negative semi-definite. (We leave the straightforward proofs as an exercise.) If the W; meet
neither of these conditions, the stationary point can be a minimum, a maximum, or a saddle point.

If the inverse in Equation (2.5-5) does not exist, then there is a line (at least) of solutions to Equa-
tion (2.5-4). A1l of these points are stationary points of the cost function. Use of a pseudo-inverse will
produce the solution with minimum norm, but this is usually a poor idea (see Section 2.4.3).

2.5.2 Nonlinear Case

If the f; are nonlinear, there is no simple, closed-form solution 1ike Equation (2.5-5). A natural
question in such situations, in which there is an easy method to handle linear equations, is whether we can
merely linearize the nonlinear equations and use the Tinear methodology. Such Tinearization does not give an
acceptable closed-form soluticn to the current problem, but it does form the basis for an iterative method.

Define the Tinearization of f4 about any point Xj as

£ (x) = aldle + p ) (2.5-6)
where

ald) < 7,3 x5) (2.5-7a)

b{d) = £(x;) - Agj)xj (2.5-7b)

Equation (2.5-5), with the AgJ) and ng) substituted for A; and bj, gives the stationary point of the cost
with the linearized f3 functions. This point is not, in general, a solution to the nonlinear problem. If,
however, x4 1is close to the solution, then Equation (2.5-5) should give a point closer to the solution,
because the linearization will give a good representation of the cost function in the region around xj.

The iterative algorithm resulting from this concept is as follows: First, choose a starting value x,.
The closer x, is to the correct solution, the better the algorithm is likely to work. Then define revised
xj values by

=1

N
DI ) TR (%)) (2.5-8)

N
Xin = K5 = 200 (50 1M, 0, ()]
i=1 i=1
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This equation comes from substituting Equation (2.5-7) into Equation (2.5-5) and simplifying. Iterate Equa-
tion (2.5-8) until it converges by some criterion, or until you give up. This method is often called quasi-
linearization because it is based on linearization not of the cost function itself, but of factors in the
cost function.

We made several vague, unsupported statements in the process of deriving this algorithm. We now need to
analyze the algorithm's performance and compare it with the performance of the algorithms discussed in the
previous sections. This task is greatly simplified by noting that Equation (2.5-8) defines a quasi-Newton
algorithm. To show this, we can write the first and second gradients of Equation (2.5-1):

N

v(x) = 2 Y [F ()10, F(x) (2.5-9)
i=1
N N

V20(x) = 2 D L0, 0T T, F ()] + 2 ) F (0192 () (2.5-10)
i=1 i=1

(We have not previously introduced the definition of the second gradient of a vector, as in the v3f;(x)
above. The result is technically a tensor, but we will not need to consider it in detail here.) Comparing
Equation (2.5-8) with Equations (2.4-4), (2.5-9), and (2.5-10), we see that the only difference between quasi-
1inearization and Newton-Raphson is that quasi-linearization has dropped the second term in Equation (2.5-10).
Quasi-linearization is thus a quasi-Newton method using

N
v29(x) = 2 Z[foi(x)]*wi[vxfi(x)] (2.5-11)
i=1

as an approximation for the second gradient. The algorithm in this form is also known as Gauss-Newton, the
term we will adopt in this book.

Near the solution, the neglected term of the second gradient is generally small. Section 5.4.3 outlines
this argument as it applies to the parameter estimation problem. Therefore, Gauss-Newton approaches the excel-
lent performance of Newton-Raphson near the solution. Such approximation is the main goal of quasi-Newton
methods.

Accurately approximating the performance of Newton-Raphson far from the minimum is not of great concern
because Newton-Raphson does not generally perform well in regions far from the minimum. We can even argue that
Gauss-Newton sometimes performs better than Newton-Raphson far from the minimum. The worst problems with
Newton-Raphson occur when the second gradient matrix has negative eigenvalues; Newton-Raphson can then go in
the wrong direction, possibly converging to a local maximum or diverging. 1If all of the Wj are positive
semi-definite (which is usually the case), then the second gradient approximation given by Equation (2.5-11)
is positive semi-definite for all x. A positive semi-definite second gradient approximation does not guaran-
tee good behavior, but it surely helps; negative eigenvalues virtually guarantee problems. Thus we can heuris-
tically argue that Gauss-Newton should perform better than Newton-Raphson. We will not attempt a detailed
support of this general argument in this book. In several specific cases the improvement of Gauss-Newton over
Newton-Raphson is easily demonstrable.

Although Gauss-Newton sometimes performs better than Newton-Raphson far from the solution, it has many of
the same basic start-up problems. Both algorithms exhibit their best performance near the minimum. Therefore,
we will often need to begin with some other, more stable algorithm, changing to Gauss-Newton as we near the
minimum.

The real argument in favor of Gauss-Newton over Newton-Raphson is the lower computational effort and com-
plexity of Gauss-Newton. Any performance improvement is a coincidental side benefit. Equation (2.5-11)
involves only first derivatives of fj(x). These first derivatives are also used in Equation (2.5-9) for the
first gradient of the cost. Therefore, after computing the first gradient of J, the only significant computa-
tion remaining for the Gauss-Newton approximation is the matrix multiplication in Equation (2.5-11). The com-
putation of the Gauss-Newton approximation for the second gradient can sometimes take less time than the compu-
tation of the first gradient, depending on the system dimensions. For complicated fj functions, evaluation
of the vifi(x) in Equation (2.5-10) is a major portion of the computation effort of the full Newton-Raphson
algorithm. Gauss-Newton avoids this extra effort, obtaining the performance per iteration of Newton-Raphson
(if not better in some areas) with computational effort per iteration comparable to gradient methods.

Considering the cost of the one-dimensional searches required by gradient methods, Gauss-Newton can even
be cheaper per iteration than gradient methods. The exact trade-off depends on the relative costs of evaluat-
ing the fi and their gradients, and on the typical number of evaluations required in the one-dimensional
searches. Gauss-Newton is at its best when the cost of evaluating the fi is nearly as much as the cost of
evaluating both the f; and their gradients due to high overhead costs common to both evaluations. This is
exactly the case in some aircraft applications, where the overhead consists largely of dimensionalizing the
derivatives and building new system matrices at each time point.

The other quasi-Newton methods, such as Davidon-Fletcher-Powell, also approach Newton-Raphson performance
without evaluating the second derivatives of the fj. These methods, however, do require one-dimensional
searches. Gauss-Newton stands almost alone in avoiding both second derivative evaluations and one-dimensional
searches. This performance is difficult to match in general algorithms that do not take advantage of the
special structure of the cost function.
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Some analysts (Foster, 1983) introduce one-dimensional Tine searches into the Gauss-Newton algorithm to
improve its performance. The utility of this idea depends on how well the Gauss-Newton method is performing.
In most of our experience, Gauss-Newton works well enough that the one-dimensional line searches cannot mea-
surably improve performance; the total computation time can well be larger with the line searches. When the
Gauss-Newton algorithm is performing poorly, however, such line searches could help stabilize it.

For cost functions in the form of Equation (2.5-1), the cost/performance ratio of Gauss-Newton is so much
better than that of most other algorithms that Gauss-Newton is the clearly preferred algorithm. You may want
to modify Gauss-Newton for specific problems, and you will almost surely need to use some special start-up
algorithm, but the best methods will be based on Gauss-Newton.

2.6 CONVERGENCE IMPROVEMENT

Second-order methods tend to converge quite rapidly in regions where they work well. There is usually
such a region around the minimum point; the size of the region is problem-dependent. The price paid for this
region of excellent convergence is that the second-order methods often converge poorly or diverge in regions
far from the minimum. Techniques to detect and remedy such convergence problems are an important part of the
practical implementation of second-order methods. In this section, we briefly list a few of the many conver-
gence improvement techniques.

Modifications to improve the behavior of second-order methods in regions far from the minimum almost
inevitably slow the convergence in the region near the minimum. This reflects a natural trade-off between
speed and reliability of convergence. Therefore, effective implementation of convergence-improvement tech-
niques usually includes different treatment of regions far from the minimum and near the minimum.

In regions far from the minimum, the second-order methods are modified or abandoned in favor of more con-
servative algorithms. In regions near the minimum, there is a transition to the fast second order methods.
The means of determining when to make such transitions vary widely. Transitions can be based on a simple
iteration count, on adaptive criteria which examine the observed convergence behavior, or on other principles.
Transitions can be either gradual or step changes.

Some convergence improvement techniques abandon second-order methods in the regions far from the minimum,
adopting gradient methods instead. In our experience, the pure gradient method is too slow for practical use
on most parameter estimation problems. Accelerated gradient methods such as PARTAN and conjugate gradient are
reasonable possibilities.

Other convergence improvement techniques are modifications of the second-order methods. Many convergence
problems relate to ill-conditioned or nonpositive second gradient matrices. This suggests such modifications
as adding positive definite matrices to the second gradient or using rank-deficient solutions.

Constraints on the allowable range of estimates or on the change per iteration can also have stabilizing
effects. A particularly popular constraint is to fix some of the ordinates at constant values, thus reducing
the dimension of the optimization problem; this is a form of axial iteration, and its effectiveness depends on
a wise (or lucky) choice of the ordinates to be constrained.

Relaxation methods, which reduce the indicated parameter changes by some fixed percentage, can sometimes
stabilize oscillating behavior of the algorithm. Line searches in the indicated direction extend this concept
and should be capable of stabilizing almost any problem, at the cost of additional function evaluations.

The above 1list of convergence improvement techniques is far from complete. It also omits mention of

numerous important implementation details. This list serves only to call attention to the area of convergence
improvement. See the references for more thorough treatments.
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Figure (2.0-1). Illustration of local and global minima.
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CHAPTER 3

3.0 BASIC PRINCIPLES FROM PROBABILITY

In this chapter we will review some basic definitions and results from probability theory. We presume
that the reader has had previous exposure to this material. Our aim here is to review and serve as a refer-
ence for those concepts that are used extensively in the following chapters. The treatment, therefore, is
quite abbreviated, and devotes Tittle time to motivating the field of study or philosophizing about the
results. Proofs of several of the statements are omitted. Some of the other proofs are merely outlined, with
some of the more tedious steps omitted. Apostol (1969}, Ash (1970), and Papoulis (1965) give more detailed
treatment.

3.1 PROBABILITY SPACES
3.1.1 Probability Triple

A probability space is formally defined by three items (2,8,P), sometimes called the probability triple.
@ 1is called the sample space, and the elements « of @ are called outcomes or realizations. 8 is a set of
sets defined on @, closed under countable set operations (union, intersection, and complement). Each set
B e g is called an event. In the current discussion, we will not be concerned with the fine details of the
definition of g. B 1is referred to as the class of measurable sets and is studied in measure theory (Royden,
1968; Rudin, 1974). P is a scalar valued function defined on 8, and is called the probability function or
probability measure. For each set B in B, the function P(B) defines the probability that w will be in B.
P must satisfy the following axioms:

1} 0 <P(B) s1 forall Beg

2) Pla) =1
3) P(}: Bi) = z: P(Bi) for all countable sequences of disjoint Bies
i i
3.1.2 Conditional Probabilities

If A and B are two events and P(B) # 0, the conditional probability of A given B 1is defined as
P(A|B) = P(A|B)/P(B) (3.1-1)
where A|B is the set intersection of the events A and B.
The events A and B are statistically independent if P(A|B) = P(A). Note that this condition is sym-
metric; that is, if P(A|B) = P(A), then P(B|A) = P(B), provided that P(A|B) and P(B|A) are both defined.
3.2 SCALAR RANDOM VARIABLES

A scalar real-valued function X(w) defined on @ is called a random variable if the set {w:X(w) < x} is
in g for all real «x.

3.2.1 Distribution and Density Functions

Every random variable has a distribution function defined as follows:

Fy(x) = P({u:X(w) < x}) (3.2-1)

It follows directly from the properties of a probability measure that Fyx(x) must be a nondecreasing function
of x, with Fy(-=) =0 and Fx(«) = 1. By the Lebesque decomposition lemma (Royden, 1968, p. 240; Rudin,
1974, p. 129), any distribution function can always be written as the sum of a differentiable component and a
component which is piecewise constant with a countable number of discontinuities. In many cases, we will be
concerned with variables with differentiable distribution functions. For such random variables, we define a
function, py(s), called the probability density function, to be the derivative of the distribution function:

py(x) = ad; Fy(x) (3.2-2)
We have also the inverse relationship

Fy(x) = fx Py (s)ds (3.2-3)

A probability density function must be nonnegative, and its integral over the real Tine must equal 1. For
simplicity of notation, we will often shorten py(s) to p(x) where the meaning is clear. Where confusion is
possible, we will retain the longer notation.

A probability distribution can be defined completely by giving either the distribution function or the
density function. We will work mainly with density functions, except when they are not defined.
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3.2.2 Expectations and Moments

The expected value of a random variable, X, is defined by

©

E{X] =J' xpy (x)dx (3.2-4)

If X does not have a density function, the precise definition of the expectation is somewhat more technical,
involving a Stieltjes integral; Equation (3.2-4) is adequate for the needs of this document. The expected
value is also called the expectation or the mean. Any (measurable) function of a random variable is also a
random variable and

E(f(X)} fw f(x)py (x)dx (3.2-5)

The expected value of X" for positive n is called the nth moment of X. Under mild conditions, knowledge
of all of the moments of a distribution is sufficient to define the distribution (Papoulis, 1965, p. 158).

The variance of X 1is defined as

var(X) = E{(X - E{X})*}
E{X?} + E{X}? - 2E{X}E{(X}

E(X*} - E{X}? (3.2-6)

The standard deviation is the square root of the variance.

3.3 JOINT RANDCM VARIABLES
Two random variables defined on the same sample space are called joint random variables.

3.3.1 Distribution and Density Functions

If two random variables, X and Y, are defined on the same sample space, we define a joint distribution
function of these variables as

FX,Y(X’y) = P({w:X(w) < x, Y{u) < Y}) (3.3-1)

For absolutely continuous distribution functions, a joint probability density function pX’Y(x,y) is defined
by the partial derivative

32
PX,Y(X,Y) = WFX,Y(X"Y) (3.3-2)

We then have alsc
X pY
Fy,y(oy) = f_m f_m PX,Y(S,t)dt ds (3.3-3)

In a similar manner, joint distributions and densities of N random variables can be defined. As in the
scalar case, the joint density function of N random variables must be nonnegative and its integral over the
entire space must equal 1.

A random N-vector is the same as N jointly random scalar variables, the only difference being in the
terminology.

3.3.2 Expectations and Moments

The expected value of a random vector X is defined as in the scalar case:

©

E{X} ='r xpx(x)ds (3.3-4)

The covariance of X 1is a matrix defined by

cov(X) = E{[X - E(X)][X - E(X)]*}

E{XX*} - E{X}E{X}* (3.3-5)

The covariance matrix is always symmetric and positive semi-definite. It is positive definite if X has a
density function. Higher order moments of random vectors can be defined, but are notationally clumsy and
seldom used.

Consider a random vector Y given by

Y=AX+b (3.3-6)
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where A is any deterministic matrix (not necessarily square), and b 1is an appropriate length deterministic
vector. Then the mean and covariance of Y are

E{Y} = E{AX + b} = AE{X} + b (3.3-7)

i

cov(Y) = E{[Y - E(Y)I[Y - E(Y)]*}
E{[AX + b - AE(X) - b][AX + b - AE(X) - b]*}
AE{[X - E(X)I[X - E(X)]*}

= A cov(X)A* (3.3-8)

3.3.3 Marginal and Conditional Distributions

If X and Y are jointly random variables with a joint distribution function given by Equation (3.3-1),
then X and Y are also individually random variables, with distribution functions defined as in Equa-
tion (3.2-1). The individual distributions of X and Y are called the marginal distributions, and the corre-
sponding density functions are called marginal density functions.

The marginal distributions of X and Y can be derived from the joint distribution. (Note that the con-
verse is false without additional assumptions.) By comparing Equations (3.2-1) and (3.3-1), we obtain

Fr(a = Fy y(xe) (3.3-9a)
and correspondingly
Fyly) = Fy y(=wy) (3.3-9b)

In terms of the density functions, using Equations (3.2-2) and (3.3-3), we obtain

py(x) = [ Py, y(Xsy)dy (3.3-10a)

pyly) = f_m Py, y (Xsy)dx (3.3-10b)

The conditional distribution function of X given Y is defined as (see Equation (3.1-1))
FX|Y(x|y) = P({w:X{w) < x}|{uw:Y(w) < y}) (3.3-11)
and correspondingly for FY|X- The conditional density function, when it exists, can be expressed as
Pypy(x1y) = Py y(xay)/pyy) (3.3-12)
Equation (3.3-12) is known as Bayes' rule.

The conditional expectation is defined as

E{X|Y} = f xpxly(xly)dx (3.3-13)
assuming that the density function exists. Using Equation (3.3-13), we obtain the useful decomposition
E{F(X,Y)} = E{E(F(X,Y)|Y)} (3.3-14)
3.3.4 Statistical Independence

Two random vectors X and Y defined on the same probability space are defined to be independent if
Fy y(xsy) = Fy(X)Fy(y) (3.3-15)
If the joint probability density function exists, we can write this condition as
Px,y(xsy) = py(x)pyly) (3.3-16)

An immediate corollary, using Equation (3.3-12), is that pyx does not depend on y, and PY|x does not
depend on x. If X and Y are independent, then f(X) and &fv) are independent for any functions f and g.

Two vectors are uncorrelated if

E{XY*} = E{XIE{Y*} (3.3-17)
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or equivalently if

E{(X - ECXI)(Y - E{Y})}*} =0 (3.3-18)
If X and Y are uncorrelated, then the covariance of their sum equals the sum of their covariances.

cov{X + Y) = cov(X) + cov(Y) (3.3-19)

If two vectors are independent, then they are uncorrelated, but the converse of this statement is false.

3.4 TRANSFORMATION OF VARIABLES

A large part of probability theory is concerned in some manner with the transformation of variables; i.e.,
characterizing random variables defined as functions of other random variables. We have previously cited
limited results on the means and covariances of some transformed variables (Equations (3.2-5), (3.3-7), and
(3.3-8)). In this section we seek the entire density function. Our consideration is restricted to variables
that have density functions. Let X be a random vector with density function py(x) defined on Ry, the
Euclidean space of real n-vectors. Then define Ye Ry by Y = f(X). We seek to derive the density func-
tion of Y. There are three cases to consider, depending on whether m =mn, m>n, orm <n.

The primary case of interest is when m = n. Assume that f(-) is invertible and has continuous partial
derivatives. (Technically, this is only required almost everywhere.) Define g(Y) = f72(Y). Then

py(y) = py(aly))[det(d)] (3.4-1)

where J 1is the Jacobian of the transformation ¢

Jyy = —n (3.4-2)

See Rudin (1974, p. 186) and Apostol (1969, p. 394) for the proof.

Example 3.4-1 Let Y = CX, with C square and nonsingular. Then g{y) = Cly
and J = C1, giving

py(y) = py(CT y)[det(C71)]
as the transformation equation.
If f 1is not invertible, the distribution of Y 1s given by a sum of terms similar to Equation (3.4-1).

For the case with m > n, the distribution of Y will be concentrated on, at most, an n-dimensional
hypersurface in Ry, and will not have a density function in Rp.

The simplest nontrivial case of m < n is when Y consists of a subset of the elements of X. In this
case, the density function sought is the density function of the marginal distribution of the pertinent subset
of the elements of X. Marginal distributions were discussed in Section 3.3.3. In general, when m<n,

X can be transformed into a random vector Z € Ry, such that Y is a subset of the elements of Z.

Example 3.4-2 let X €& R, and Y =X, +X,. Define Z =(X where

o]

Then using example 3.4-1,

py(2z) = py(C7t)|det(CH)]
= % py(C772)

where

[ ]

Then Y = Z,, so the distribution of Y is the marginal distribution of Z,, which can be computed from
Equation (3.3-10).

3.5 GAUSSIAN VARIABLES

Random variables with Gaussian distributions play a major role in this document and in much of probability
theory. We will, therefore, briefly review the definition and some of the salient properties of Gaussian dis-

tributions. These distributions are often called normal distributions in the literature.
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3.5.1 Standard Gaussian Distributions

A1l Gaussian distributions derive from the distribution of a standard Gaussian variable with mean 0 and
covariance 1. The density function of the standard Gaussian distribution is defined to be

p(x) = (2n)"%/2 exp(— % x2) (3.5-1)

The distribution function does not have a simple closed-form expression. We will first show that Equa-
tion (3.5-1) is a valid density function with mean 0 and covariance 1. The most difficult part is showing
that its integral over the real line is 1.

Theorem 3.5-1 Equation (3.5-1) defines a valid probability density function.
Proof The function is obviously nonnegative. There remains only to show

that its integral over the real line is 1. Taking advantage of the symmetry
about 0, we can reduce this problem to proving that

f exp(— % xz)dx = Va2 (3.5-2)
0

There is no closed-form expression for this integral over any finite range,
but for the semi-infinite range of Equation (3.5-2) the following "trick"
works. Form the square of the integral:

" eol- L) - [ (" [.Az z]d 53
[J: exp(zx)x] J;J:exp 2(x + y2)|dx dy (3.5-3)

Then change variables to polar coordinates, substituting r? for x

and r dr de for dx dy, to get

2 2

+ty

w 2 /2w o
[J; exp(— % xz)dx] = J: J'o r exp (— % rz)dr de (3.5-4)

The integral in Equation (3.5-4) has a closed-form solution:

J‘ r exp(— % rz)dr = —exp(- % rz) =0-(-1)=1 (3.5-5)
0 0
Thus,
© 1 2 1/2m
- = x2 = =T -
[J’u exp( 5 x)dx] JD' 1do =35 (3.5-6)
Taking the square root gives Equation {3.5-2), completing the proof.
The mean of the distribution is trivially zero by symmetry. To derive the covariance, note that
21 = s 2 -1/2 1. _ -1/2 _l2m=
E{1 - X*} (1 - x%)(2n) exp(- 5 x dx = (27) x expl- 5 X 0 (3.5-9)
Thus,
cov(X) = E{X®} - E{X}2=1-0=1 (3.5-10)

This completes our discussion of the scalar standard Gaussian.

We define a standard multivariate Gaussian vector to be the concatenation of n independent standard
Gaussian variables. The standard multivariate Gaussian density function is therefore the product of n
marginal density functions in the form of Equation (3.5-1).

n
o (2n)7H/2 exp(— 3 x’:)

i=1 '

p(x)

(20)"/2 exp(~ % x*x) (3.5-11)

The mean of this distribution is 0 and the covariance is an identity matrix.

3.5.2 General Gaussian Distributions

We will define the class of all Gaussian distributions by reference to the standard Gaussian distributions
of the previous section. We define a random vector Y to have a Gaussian distribution if Y can be repre-
sented in the form
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Y=A+m (3.5-12)

where X is a standard Gaussian vector, A is a deterministic matrix and m is a deterministic vector. The
A matrix need not be square. Note that any deterministic vector is a special case of a Gaussian vector with
a zero A matrix.

We have defined the class of Gaussian random variables by a set of operations that can produce such
variables. It now remains to determine the forms and properties of these distributions. (This is somewhat
backwards from the most common approach, where the forms of the distributions are first defined and Equa-
tion (3.5-12) is proven as a result. We find that our approach makes it somewhat easier to handle singular
and nonsingular cases consistently without introducing characteristic functions (Papoulis, 1965).

By Equations (3.3-7) and (3.3-8), the Y defined by Equation (3.5-12) has mean m and covariance AA*,
Qur first major result will be to show that a Gaussian distribution is uniquely specified by its mean and
covariance; that is, if two distributions are both Gaussian and have equal means and covariances, then the two
distributions are identical. Note that this does not mean that the A matrices need to be identical; the
reason the result is nontrivial is that an infinite number of different A matrices give the same covariance
AA*,

Example 3.5-1 Consider three Gaussian vectors
0 1 0.707 -0.707
1 Xl * YZ = X2
1 0 0.707 0.707
1 0 0
X3
0 0.86 0.5

where X, and X, are standard Gaussian 2-vectors and X, is a standard
Gaussian 3-vector. We have

[0 1lfo 1 10
| ][ ] ) [ ]
1 ol o 0 1

[0.707  -0.7071[0.707 0.707 1 O
cov(Y,) =
l0.707  0.707) L0.707 0.707 0 1

—
H

and

Yy

) 1 g
1 0 0 1 0
cov(Y,) = 0.866 Of =
0 0.866 0.5 0 1
0.5 Q

Thus all three Y; have equal covariance.

The rest of this section is devoted to proving this result in three steps. First, we will consider
square, nonsingular A matrices. Second, we will consider general square A matrices. Finally, we will
consider nonsquare A matrices. Each of these steps uses the results of the previous step.

Theorem 3.5-2 If Y s a Gaussian n-vector defined by Equation (3.5-12)

with a nonsingular A matrix, then the probability density function of Y
exists and is given by

ply) = |2ma|72/? exp[— % (y = m)*a=*(y - m)] (3.5-13)

where A is the covariance AA*.

Proof This is a direct application of the transformation of variables for-
mula, Equation (3.4-1).

Py(y) = PX[A'l(.Y = m)]lA-I‘

(n) ™ expf- § 1y - A - m1}al-

|onhnx| ~2/2 EXP[- % (y - m*(AA*)"H(y - m)]
Substituting A for AA* then gives the desired result.

Note that the density function, Equation {3.5-13), depends only on the mean and covariance, thus proving
the uniqueness result for the case restricted to nonsingular matrices. A particular case of interest is where
m is 0 and A is unitary. (A unitary matrix is a square one with AA* = I.) In this case, Y has a standard
Gaussian distribution.
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Theorem 3.5-3 If Y is a Gaussian n-vector defined by Equation (3.5-12)
with any square A matrix, then Y can be represented as

Y=SX+m (3.5-14)

where X 1is a standard Gaussian n-vector and S s positive semi-definite.
Furthermore, the S in this representation is unique and depends only on
the covariance of Y.

Proof The uniqueness is easy to prove, and we will do it first. The covari-
ance of the Y given in Equation (3.5-12) is AA*. The covariance of a Y
expressed as in Equation (3.5-18) is SS*. A necessary (but not sufficient)
condition for Equation (3.5-14) to be a valid representation of Y is, there-
fore, that SS* equal AA*. It is an elementary result of linear algebra
(Wilkinson, 1965; Dongarra, Moler, Bunch, and Stewart, 1979; and Strang,

1980) that AA* is always positive semi-definite and that there is one and
only one positive semi-definite matrix S satisfying SS* = AA*. § s
called the matrix square root of AA*. This proves the uniqueness.

The existence proof relies on another result from linear algebra: any square
matrix A can be factored as S5Q, where S 1is positive semi-definite and Q
is unitary. For nonsingular A, this factorization is easy—S 1is the matrix
square root of AA* and Q is SA. A formal proof for general A matrices
would be too long a diversion into linear algebra for our current purposes,

so we will omit it. This factorization is closely related to, and can be
formally derived from, the well-known QR factorization, where Q is unitary
and R is upper triangular (Wilkinson, 1965; Dongarra, Moler, Bunch, and
Stewart, 1979; and Strang, 1980).

Given the SQ factorization of A, define
X = Qx (3.5-15)

By theorem (3.5-2), ¥ d9s a standard Gaussian n-vector. Substituting into
fguation (3.5-12) gives Equation (3.5-14), completing the proof.

Because the S in the above theorem depends only on the covariance of Y, it immediately follows that
the distribution of any Gaussian variable generated by a square A matrix is uniquely specified by the mean
and covariance. It remains only to extend this result to rectangular A matrices.

Theorem 3.5-4 The distribution of any Gaussian vector is uniquely defined
by its mean and covariance.

Proof We have already shown the result for Gaussian vectors generated by
square A matrices. We need only show that a Gaussian vector generated by

a rectangular A matrix can be rewritten in terms of a square A matrix.

Let A be n-by-m, and consider the two cases, n > m and n <m. If n<m,
define a standard Gaussian n-vector X by augmenting the X vector with

n - m independent standard Gaussians. Then define an n-by-n matrix A by
augmenting A with n - m vrows of zeros. We then have

Y= A +m
as desired.

For the case n < m, define a random m-vector ¥ by augmenting Y with
m - n zeros. Then

Y= Ax +m

where m and A are obtained_by augmenting zeros to m and A. Use
Theorem (3.5-3) to rewrite Y as

Y=8SX+m (3.5-16)

Since the last m - n elements of Y are zero, Equation (3.5-16) must be

in the form
Y § o|[%, m
= o+
0 0 olLX, 0

Thus

which is in the required form.

Theorem (3.5-4) is the central result of this approach to Gaussian variables. It makes the practical
manipulation of Gaussian variables much easier. Once you have demonstrated that some result is Gaussian, you
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need only derive the mean and covariance to specify the distribution completely. This is far easier than
manipulating the full density function or distribution function, a process which often requires partial differ-
ential equations. If the covariance matrix is nonsingular, then the density function exists and is given by

Equation (3.5-13). If the covariance is singular, a density function does not exist (unless you extend the
definition of density functions to include components 1ike impulse functions).

Two properties of the Gaussian density function often provide useful computational shortcuts to evaluating
the mean and covariance of nonsingular Gaussians. The first property is that the mean of the density function
occurs at its maximum. The mean is thus the unique solution of

vy en ply) =0 (3.5-17)

The logarithm in this equation can be removed, but the equation is usually most useful as written. The second
property is that the covariance can be expressed as

cov(Y) = —[V; wn ply)]? (3.5-18)
Both of these properties are easy to verify by direct substitution into Equation (3.5-13).

3.5.3 Properties
In this section we derive several useful properties of Gaussian vectors. Most of these properties relate
to operations on Gaussian vectors that give Gaussian results. A major reason for the wide use of Gaussian

distributions is that many basic operations on Gaussian vectors give Gaussian results, which can be character-
ized completely by the mean and covariance.

Theorem 3.5-5 If Y 1is a Gaussian vector with mean m and covariance A,
and if Z 1is given by

Z=8BY+b
then Z is Gaussian with mean Bm + b and covariance BAB*.
Proof By definition, Y can be expressed as

Y=AX+m

where X ds a standard Gaussian. Substituting Y into the expression for
7 gives

Z =B(AX +m) +b = BAX + (Bm + b)

proving that Z 1is Gaussian. The mean and covariance expressions for linear
operations on any random vector were previously derived in Equations (3.3-7)
and (3.3-8).
Several of the properties discussed in this section involve the concept of jointly Gaussian variables.
Two or more random vectors are said to be jointly Gaussian if their joint distribution is Gaussian. Note that
two vectors can both be Gaussian and yet not be jointly Gaussian.

Example 3.5-2 Let Y be a Gaussian random variable with mean O and
variance 1. Define Z as

7 ={ Y -lsYsl
Y elsewhere

The random variable Z is Gaussian with mean 0 and variance 1 (apply Equation (3.4-1) to show this),
but Y and Z are not jointly Gaussian.

Theorem 3.5-6 Let Y, and Y, be jointly Gaussian vectors, and let the mean
and covariance of the joint distribution be partitioned as

L | F P

Then the marginal distributions of Y, and Y, are Gaussian with

E{Y,} =m, cov(Yy) = A,

E{Y,} = m, cov(Y,) = 4,,

Proof Apply theorem (3.5-5) with B =[1 0] and B = [0 13.
The following two theorems relate to independent Gaussian variables:

Theorem 3.5-7 If Y and Z are two independent Gaussian variables, then Y and Z are jointly
Gaussian.
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Proof For nonsingular distributions, this proof is easy to do by writing out
the product of the density functions. For a more general proof, we can
proceed as follows: write Y and Z as

Y = AXp +my
=A% +m

where X, and X, are standard Gaussian vectors. We can always construct the
X, and X, in these equations to be independent, but the following argument
avoids the necessity to prove that statement. Define two independent standard
Gaussians, X, and X,, and further define

V=A% +m

Z=nX% +m,

Then Y and 7 have the same joint distribution as Y and Z. The concatenation
of X, and X, 1is a standard Gaussian vector. Therefore, Y and Z are jointly
Gaussian because they can be expressed as

Y A, 0f]X m,
~ = ~ +
z 0 AbL X m,

2 2

Since Y and Z have the same joint distribution as Y and Z, Y and Z are also
jointly Gaussian.

Theorem 3.5-8 If Y and Z are two uncorrelated jointly Gaussian variables,
then Y and Z are independent and Gaussian.

Proof By theorem (3.5-3), we can express

Y| .
[Z] =SX+m

where X 1is a standard Gaussian vector and S s positive semi-definite.
Partition S as

By the definition of "uncorrelated," we must have S,, = §¥, = 0. Therefore,
partitioning X into X, and X,, and partitioning m into m; and m,, we
can write

Y =S, X, +m

=35, +my

Since Y and Z are functions of the independent vectors X, and X, Y and Z
are independent and Gaussian.

Since any two independent vectors are uncorrelated, Theorem (3.5-8) proves that independence and lack of
correlation are equivalent for Gaussians.

We previously covered marginal distributions of Gaussian vectors. The following theorem considers condi-
tional distributions. We will directly consider only conditional distributions of nonsingular Gaussians.
Since the results of the theorem involve inverses, there are obvious difficulties that cannot be circumvented
by avoiding the use of probability density functions in the proof.

Theorem 3.5-9 Let Y, and Y, be jointly Gaussian variables with a nonsingu-

Tar joint distribution. Partition the mean, covariance, and inverse covariance
of the joint distribution as

2 -1
m = s A= , and I =A"" =

Then the conditional distributions of Y, given Y,, and of Y, given Y., are
Gaussian with means and covariances

EQY, Yo} = my + A ,050{y, - m,) (3.5-18a)
cov{Y |Y,} = A, - Aj,A75h,, = (T;,)7? (3.5-18b)
ELY,|Y, 3 =m, + A, A7 (y, - my) (3.5-19a)

covi{¥, [Y.} = A,, = A, ATTA, = (T,,)7° (3.5-19b)
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A simple summary of this section is that linear operations
principle is not generally true for nonlinear operations.

The final

Proof The joint probability density function of Y, and Y, s
* v
1Y o™ T Tt ™
ply,»y,) = ¢ exps- 5 _
Yo - ml e Tolya- ™
where ¢ 1is a scalar constant, the magnitude of which we will not need to
compute. Expanding the exponent, and recognizing that T,, =T,,*, gives

1
P(yl;)’z) =cC exp[— 7 (.yl - ml)*rll(yl - ml)
1
-7 (y, - mz)*rzz(yz - mz) - (-yl - ml).krm(-y2 - mz)]
Completing squares results in

1 - -
P(.Yp.Yz) =cC EXP{- 7 [yl - m]_ + Plirlz(yz - mz)]*rll[yl -my + T1ir12(y2 - mz)]
1 -
- ?'(yz - my)*(Ty, - rzlrlir12)(y2 - mz)}

Integrating this expression with respect to y, gives the marginal density
function of Y,. The second term in the exponent does not involve vy,, and
we recognize the first term as the exponent in a Gaussian density function
with mean m, - rjir ,(y, - m,) and covariance T,,. Its integral with
respect to y, is tﬁere%ore a constant independent of y,. The marginal

density function of Y, is therefore
1 -
p(yz) =G eXp[_ 2 (yp = mp)* (15, - r21rlir12)()l2 - mz)]

where c, is a constant. Note that because we know that Equation (3.5-22)
must be a probability density function, we need not compute the value of ¢,;
this saves us a lot of work. Equation (3.5-22) is an expression for a
Gaussian density function with mean m, and covariance (T,, - r,,07ir,,) "
The partitioned matrix inversion lemma (Appendix A) gives us

-1 -1 _
(rzz - r21F11r12) t= Ayo

thus independently verifying the result of Theorem (3.5-6) on the marginal
distribution.

The conditional density of Y, given Y, is obtained using Baves' rule, by
dividing Equation (3.5-21) by Equation (3.5-22)

ply,sy,)
P(y1|¥2) = _-51927_

¢1 exp{‘ % Ly, -my+ F:ilrlz(yz - mz)]*ru[yl -mt r;irll(‘yz ) mz)]}

where ¢, 1is a constant. This is an expression for a Gaussian density
function with a mean m, - T7iT;,(y, - m;) and covariance r7i. The parti-
tioned matrix inversion lemma (Appendix A) then gives

R PP A12Az3h21

-1 = -1
TpaTap = Apphss
Thus the conditional distribution of Y, given ¥, {s Gaussian with mean
m, + A;,A;3(y, - m,) and covariance 4,, - Ay,A71h,,, as we desired to prove.
Tﬁe conéi%1ona1 distribution of Y, given Y, foilows by symmetry.
result of this section concerns sums of Gaussian variables.

Theorem 3.5-10 If Y, and Y, are jointly Gaussian random vectors of equal
Tength and their joint distribution has mean and covariance partitioned as

m, Ayy Ayo

m = A=
m, Ayq Aysp

Then Y, + Y, is Gaussian with mean m, +m, and covariance
Ayy ¥ Ay ¥ Ay T Agge

Proof Apply Theorem (3.5-5) with B = f1 1] and b =0.

associated with the analysis of linear systems.

3.5.3

(3.5-20)

(3.5-21)

(3.5-22)

(3.5-23)

on Gaussian variables give Gaussian results. This
Therefore, Gaussian distributions are strongly
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3.5.4 Central Limit Theorem

The Central Limit Theorem is often used as a basis for justifying the assumption that the distribution
of some physical quantity is approximately Gaussian.

Theorem 3.5-11 Let Y,, Y,... be a sequence of independent, identically distributed random
vectors with finite mean m and covariance A. Then the vectors

N

1
1, = — E (Y., - m)
N

i=1
converge in distribution to a Gaussian vector with mean zero and covariance A.
Proof See Ash (1970, p. 171) and Apostol (1969, p. 567).

Cramer (1946) discusses several variants on this theorem, where the Y4 need not be independent and iden-
tically distributed, but other requirements are placed on the distributions. The general result is that sums
of random variables tend to Gaussian limits under fairly broad conditions. The precise conditions will not
concern us here. An implication of this theorem is that macroscopic behavior which is the result of the
summation of a large number of microscopic events often has a Gaussian distribution. The classic example is
Brownian motion. We will illustrate the Central Limit Theorem with a simple example.

Example 3.5-3 Let the distribution of the Y; in Theorem (3.5-11) be uniform
on the interval (-1,1). Then the mean is zero and the covariance is 1/3.
Examine the density functions of the first few Zj.

The first function, Z,, is equal to Y;, and thus is uniform on (-1,1).

Figure (3.5-1) compares the densities of Z, and the Gaussian limit. The
Gaussian limit distribution has mean zero and variance 1/3.

For the second function we have

1
Zz =/—2_(Y1 +Y2)

and the density function of Z, is given by
plz,) = § (7Z- [2) for |2 s /2
Figure (3.5-2) compares the density of Z, with the Gaussian Timit.

The density function of Z, is given by

3V3 1

== (1-2%) 2| < =

8 2| e
p(z,) = 31{3—37 (2% - 2/3|z] +3) /Ljs |z| s /3

0 lz| 2 V3

Figure (3.5-3) compares density of Z, with the Gaussian limit. By the time
N “is 3, Zy is already becoming reasonably close to Gaussian.
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Figure (3.5-1). Density functions of Z; and the limit Gaussian.
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Figure (3.5-2). Density functions of Z; and Figure (3.5-3). Density functions of Z3 and
the Timit Gaussian. the 1imit Gaussian.
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CHAPTER 4

4.0 STATISTICAL ESTIMATORS

In this chapter, we introduce the concept of an estimator. We then define some basic measures of esti-
mator performance. We use these measures of performance to introduce several common statistical estimators.
The definitions in this chapter are general. Subsequent chapters will treat specific forms. For other
treatments of this and related material, see Sorenson (1980), Schweppe (1973), Goodwin and Payne (1977), and
Eykhoff (1974). These books also cover other estimators that we do not mention here.

4.1 DEFINITION OF AN ESTIMATOR

The concept of estimation is central to our study. The statistical definition of an estimator is as
follows:

Perform an experiment (input) U, taken from the set (:) of possible experiments on the system. The system
response is a random variable:

7= 1(g,U,0) (4.1-1)

where ¢ € £ 1is the true value of the parameter vector and w € @ 1is the random component of the system.

R An estimator is any function of Z with range in =. The value of the function is called the estimate
g£. Thus

£ = £(Z,U) = £(2(£,U,0),U) (4.1-2)

This definition is readily generalized to multiple performances of the same experiment or to the performance
of more than one experiment. If N experiments U; are performed, with responses Zj, then an estimate
would be of the form

£ = E(Zyse Zoly Uy
= E(Z(£,Uy50,)5- - 208, Uysuy) Uy - - Uy) (4.1-3)

where the wj are independent. The N experiments can be regarded as a single "super-experiment"
(Uy...U§) E@x@x ... x@, the response to which is the concatenated vector (Z,...ZN) €D x@Dx ... x@.
The random element is (w,...0N) € @ x @ x ... x Q. Equation (4.1-3) is then simply a restatement of
Equation (4.1-2) on the larger space.

For simplicity of notation, we will generally omit the dependence on U from Equations (4.1-1) and
(4.1-2). For the most part, we will be discussing parameter estimation based on responses to specific, known
inputs; therefore, the dependence of the response and the estimate on the input are irrelevant, and merely
clutter up the notation. Formally, all of the distributions and expectations may be considered to be implic-
itly conditioned on U.

Note that the estimate £ is a random variable because it is a function of Z, which is a random varia-
ble. When the experiment is actually performed, specific realizations of these random variables will be
obtained. The true parameter value & 1is not usually considered to be random, simply unknown.

In some situations, however, it is convenient to define & as a random variable instead of as an unknown
parameter. The significant difference between these approaches is that a random variable has a probability
distribution, which constitutes additional information that can be used in the random-variable approach.
Several popular estimators can only be defined using the random-variable approach. These advantages of the
random-variable approach are balanced by the necessity to know the probability distribution of &g. If this
distribution is not known, there are no differences, except in terminology, between the random-variable and
unknown-parameter approaches.

A third view of & involves ideas from information theory. In this context, & is considered to be an
unknown parameter as above. Even though £ 1is not random, it is defined to have a "probability distribution."
This probability distribution does not relate to any randomness of &, but reflects our knowledge or informa-
tion about the value of ¢. Distributions with low variance correspond to a high degree of certainty about
the value of ¢, and vice versa. The term “probability distribution" is a misnomer in this context. The terms
"information distribution" or "information function" more accurately reflect this interpretation.

In the context of information theory, the marginal or prior distribution p{g) reflects the information
about £ prior to performing the experiment. A case where there is no prior information can be handled as a
1imit of prior distributions with less and less information (variance going to infinity). The distribution of
the response Z is a function of the value of ¢. When ¢ is a random variable, this is called p(Z|g), the
conditional distribution of 2z given £. We will use the same notation when & 1is not random in order to
emphasize the dependence of the distribution on £, and for consistency of notation. When p(g) is defined,
the joint probability density is then

p(Z,g) = p(Z]g)p(g) (4.1-4)

The marginal probability density of Z s
p(2) = [oiz.e)ale] (4.1-5)
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The conditional density of & given Z (also called the posterior density) is

pls]z) = RiBsE) - pUZLERR(E) (4.1-6)

In the information theory context, the posterior distribution reflects information about the value of ¢ after
the experiment is performed. It accounts for the information known prior to the experiment, and the informa-
tion gained by the experiment.

The distinctions among the random variabie, unknown parameter, and information theory points of view are
largely academic. Although the conventional notations differ, the equations used are equivalent in all three
cases. Our presentation uses the probability density notation throughout. We see little benefit in repeating
jdentical derivations, substituting the term "information function" for "Jikelihood function" and changing
notation. We derive the basic equations only once, restricting the distinctions among the three points of view
to discussions of applicability and interpretation.

4.2 PROPERTIES OF ESTIMATORS

We can define an infinite number of estimators for a given problem. The definition of an estimator pro-
vides no means of evaluating these estimators, some of which can be ridiculously poor. This section will
describe some of the properties used to evaluate estimators and to select a good estimator for a particular
problem. The properties are all expressed in terms of optimality criteria.

4.2.1 Unbiased Estimators

A bias is a consistent or repeatable error. The parameter estimates from any specific data set will
always be imperfect. It is reasonable to hope, however, that the estimate obtained from a large set of
maneuvers would be centered around the true value. The errors in the estimates might be thought of as consist-
ing of two components—consistent errors and random errors. Random errors are generally unavoidable. Consis-
tent or average errors might be removable.

Let us restate the above ideas more precisely. The bias b of an estimator £{(.) is defined as
b(g) = E{E[g} - & = ECE(Z(g,0)) e} - & (4.2-1)

The Z 1in these equations is a random variable, not a specific realization. Note that the bias is a function
of the true value. It averages out (by the E{.}) the random noise effects, but there is no averaging among
the different true values. The bias is also a function of the input U, but this dependence is not usually
made explicit. A1l discussions of bias are implicitly referring to some given input.

An unbiased estimator is defined as an estimator for which the bias is identically zero:
b(g) =0 (4.2-2)

This requirement is quite stringent because it must be met for every value of £. Unbiased estimators may not
exist for some problems. For other problems, unbiased estimators may exist, but may be too complicated for
practical computation. Any estimator that is not unbiased is called biased.

Generally, it is considered desirable for an estimator to be unbiased. This judgment, however, does not
apply to all situations. The bias of an estimator measures only the average of its behavior. It is possible
for the individual estimates to be so poor that they are ludicrous, yet average out so that the estimator is
unbiased. The following example is taken from Ferguson (1967, p. 136).

Example 4.2-1 A telephone operator has been working for 10 minutes and won-
ders if he would be missed if he took a 20 minute coffee break. Assume that
calls are coming in as a Poisson process with the average rate of 2 calls
per 10 minutes, A being unknown. The number Z of calls received in the
first 10 minutes has a Poisson distribution with parameter A.

e
Z!

P(Z]r) = Z=0,l...

On the basis of Z, the operator desires to estimate 8, the probability of
receiving no ca]]shin the next 20 minutes. For a Poisson process, B = e2X
If the estimator £(Z) is to be unbiased, we must have

E{B(Z(B,u)) |8}

g for all ge (0,1]

Thus
= -x 2
2: B(2) E—ZTA— sg=e?* forall ae [0,%)

Multiply by ek, giving

~N
"
o
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Expand the right-hand side as a power series to get
PN A z
IR UL SOV
Z! 7!
=0 I=0

The convergent power series are egual for all i e [0,») if the coefficients

are identical. Thus &(Z) = (-1)¢ is the only unbiased estimator of g for
this problem. The operator would estimate the probability of missing no

calls as +1 if he had received an even number of calls and -1 if he had

received an odd number of calls, This estimator is the only unbiased estimator
for the problem, but it is a ridiculously poor cne. If the estimates are
required to lie in the meaningful range of [0,1], then there is no unbiased
estimator, but some quite reasonable biased estimators can be easily constructed.

The bias is a useful tool for studying estimators. In general, it is desirable for the bias to be zero,
or at least small. However, because the bias measures only the average properties of the estimates, it cannot
be used as the sole criterion for evaluating estimators. It is possible for a biased estimator to be clearly
superior to all of the unbiased estimators for a problem.

4,2.2 Minimum Variance Estimators

The variance of an estimator is defined as
var(€) = EQ(E -~ E{E|e})(E - E{E|g})*|&} (4.2-3)

Note that the variance, like the bias, is a function of the input and the true value. The variance alone is
not a reasonable measure for evaluating an estimator. For instance, any constant estimator (one that always
returns a constant value, ignoring the data) has zero variance. These are obviously poor estimators in most
situations.

A more useful measure is the mean square error:
mse(€) = E{(g - £)*|e} (4.2-8)

The mean square error and variance are obviously identical for unbiased estimators (E{£|£} = ¢). An estimator
is uniformly minimum mean-square error if, for every value of £, its mean square error is less than or equal
to the mean square error of any other estimator. Note that the mean-square error is a symmetric matrix. One
symmetric matrix is less than or equal to another if their difference is positive semi-definite. This defini-
tion is somewhat academic at this point because such estimators do not exist except in trivial cases. A con-
stant estimator has zero mean-square error when ¢ is equal to the constant. (The performance is poor at
other values of €.) Therefore, in order to be uniformly minimum mean-square error, an estimator would have
to have zero mean-square error for every £; otherwise, a constant estimator would be better for that ¢.

The concept of minimum mean-square error becomes more useful if the class of estimators allowed is
restricted. An estimator is uniformly minimum mean-square error unbiased if it is unbiased and, for every
value of ¢, its mean-square error is less than or equal to that of any other unbiased estimator. Such esti-
mators do not exist for every problem, because the requirement must hold for every value of ¢. Estimators
optimum in this sense exist for many problems of interest. The mean-square error and the variance are identi-
cal for unbiased estimators, so such optimal estimators are also called uniformly minimum variance unbiased
estimators. They are also often called simply minimum variance estimators. This term should be regarded as
an abbreviation, because it is not meaningful in itself.

4.2.3 Cramer-Rao Inequality (Efficient Estimators)

The Cramer-Rao inequality is one of the central results used to evaluate the performance of estimators.
The inequality gives a theoretical limit to the accuracy that is possible, regardless of the estimator used.
In a sense, the Cramer-Rao inequality gives a measure of the information content of the data.
Before deriving the Cramer-Rac inequality, let us prove a brief Temma.
Lemma 4.2-1 Let X and Y be two random N-vectors. Then
E{XX*} > E{XY*I[E{YY*}]*E{YX*} (4.2-5)

assuming that the inverse exists.

Proof The proof is done by completing the square. let A be any nonrandom
N-by-N matrix. Then

E{(X - AY)(X - AY)*} 2 0 (4.2-6)
because it is a covariance matrix. Expanding
E{XX*} 2 AE{YX*} + E{XY*}A* - AE{YY*}a* (4.2-7)
choose

A = ELXY*}ELYY*}]7? (4.2-8)
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Then
E{XX*} 2 E{XY*I[E(YY*}] 2E{YX*} + E{XY*}[E{YY*} ] TE{YX*}
- [E{XY*}[E{YY*}]'lE{YY*}[E{YY*}]'lE{YX*} (4.2-9)
or
E{XX*} > E{XY*}LE{YY*}] LE{YX*} (4.2-5)

completing the lemma.
We now seek to find a bound on E{(§ - £)(E - £)*|¢}, the mean square error of the estimate.

Theorem 4.2-2 (Cramer-Rao) Assume that the density p(Z|g) exists and is

smooth enough to allow the operations below. (See Cramér (1946) for details.)
This assumption proves adequate for most cases of interest to us. Pitman (1979)
discusses some of the cases where p(Z|g) is not as smooth as required here.
Then

E{(E(Z) - £)(E(Z) - €)|g} = [1 + vgb(g)]M(a)'l[I + ng(é)]* (4.2-10)
where

M(g) = E((v] #n p(Z]E)) (v, an p(zle)) e} (4.2-11)

2
proof Let X and Y from lemma (4.2-1) be £(Z) - £ and vg wan p(Zig),
respectively, and let all of the expectations in the lemma be conditioned
on £. Concentrate first on the term

E(XY*|} = EU(E(Z) - &)(v, 20 p(Z]E))]E}
- fe@) - o, mopleele)z| (4.2-12)
where d|Z| is the volume element in the space Z. Substituting the
relation
v (Z]e)
VE n p(ZIE) = -p—(m)— (4.2-13)
gives
Evsje) = [ (6(2) - o) (7p(z]e)dlz|
- [e@mpaiondl - fompaionaz| (4.2-14)
Now £(Z) is not a function of ¢. Therefore, assuming sufficient smoothness
of p(Z|g) as a function of &, the first term becomes

[e@wpuienizl = v [e@pizlonaiz]
= v€5{5(2)|g} (4.2-15)
Using the definition (Equation (4.2-1)) of the bias, obtain

ng{é(Z)la} =v.le+ b(g)] = 1 + v,b(e) (4.2-16)

In the second term of Equation (4.2-14), £ is not a function of Z, so

fEVEp(Z|€)d|Z| = avgfp(llg)dlll

- 671 = 0 (4.2-17)
Using Equations (4.2-16) and (4.2-17) in Equation (4.2-14) gives
E{XY*{g} =1 + vgb(g) (4.2-18)
Define the Fisher Information matrix
M(g) = EXYY*[g} = EC(vy 2n p(Z]€))(v, 2n p(Z]E))]e) (4.2-19)
They by lemma (4.2-1)
E((E(Z) - £)(E(Z) - &)*[e} 2 [T + ng(ﬁ)]M(i)'l[I + ng(i)]* (4.2-10)

which is the desired result.

Equation {4.2-10) is the Cramer-Rao inequality. Its specialization to unbiased estimators is of particular
interest. For an unbiased estimator, b(g) is zero so

EQ(E(Z) - €)(E(Z) - €)*je} = M(g)™* (4.2-20)



4.2.3 39

This gives us a lower bound, as a function of ¢, on the achievable variance of any unbiased estimator. An
unbiased estimator which attains the equality in Equation (4.2-20) is called an efficient estimator. No
estimator can achieve a lower variance than an efficient estimator except by introducing a bias in the esti-
mates. In this sense, an efficient estimator makes the most use of the information available in the data.

The above development gives no guarantee that an efficient estimator exists for every problem. When an
efficient estimator does exist, it is also a uniformly minimum variance unbiased estimator. It is much easier
to check for equality in Equation (4.2-20) than to directly prove that no other unbiased estimator has a
smaller variance than a given estimator. The Cramer-Rao inequality is therefore useful as a sufficient (but
not necessary) check that an estimator is uniformly minimum variance unbiased.

A useful alternative expression for the information matrix M can be obtained if p(Z|g) is sufficiently
smooth. Applying Equation (4.2-13) to the definition of M (Equation (4.2-19)) gives

(v¥P(Z]£)) (v, p(Z]€))
M(g) = E{—5 & £ (4.2-21)
p(z}e)?

Then examine
E{v2 E€v* VEP(ZIE)
l =
g ™0 p(Z|e) e} e HRE £

v2p(Z]€) (vgp(Zlg))vgp(Zle)
E 5 e - F £ (4.2-22)
picle p(Z]g)?

The second term is equal to M(£), as shown in Equation (4.2-21). Evaluate the first term as

v2p(Z]E) r,
f—pé(ﬂET p(Z]e)d|Z] -fvgp(z|s)d|z| (4.2-23)
- vgfp(z|g)d|z|
=v1=0 (4.2-23)

Thus an alternate expression for the information matrix is

M(g) = -E{vg an p(Zle) &} (4.2-24)

4,2.4 Bayesian Optimal Estimators

The optimality conditions of the previous sections have been quite restrictive in that they must hold
simultaneously for every possible value of £. Thus for some problems, no estimators exist that are optimal
by these criteria. The Bayesian approach avoids this difficulty by using a single, overall, optimality
criterion which averages the errors made for different values of ¢. With this approach, an optimal estimator
may be worse than a nonoptimal one for specific values of ¢, but the overall averaged performance of the
Bayesian optimal estimator will be better.

The Bayesian approach requires that a loss function (risk function, optimality criterion) be defined as a
function of the true value ¢ and the estimate £. The most common loss function is a weighted square error

I(e,E) = (- E)*R(g = &) (4.2-25)

where R is a weighting matrix. An estimator is considered optimal in the Bayesian sense if it minimizes the
a posteriori expected value of the loss function:

E(E.E(2) |2} =ﬁ(s,é(l))p(£|2)dlél
~Jaet@palopedlel
- p(Z)

An optimal estimator must minimize this expected value for each Z. Since P(Z) is not a function of £, it
does not affect the minimization of Equation (4.2-26) with respect to &. Thus a Bayesian optimal estimator
also minimizes the expression

(4.2-26)

Joe.emaionedll (4.2-27)
Note that p(£), the probability density of ¢, is required in order to define Bayesian optimality. For this
purpose, p(¢) can be considered simply as a weighting that is part of the loss function, if it cannot
appropriately be interpreted as a true probability density or an information function (Section 4.1).

4.2.5 Asymptotic Properties

Asymptotic properties concern the characteristics of the estimates as the amount of data used increases
toward infinity. The amount of data used can increase either by repeating experiments or by increasing the
time slice analyzed in a single experiment. (The latter is pertinent only for dynamic systems.) Since only
a finite amount of data can be used in practice, it is not immediately obvious why there is any interest in
asymptotic properties.
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This interest arises primarily from considerations of simplicity. It is often simpler to compute asymp-
totic properties and to construct asymptotically optimal estimators than to do so for finite amounts of data.
We can then use the asymptotic results as good approximations to the more difficult finite data results if the
amount of data used is large enough. The finite data definitions of unbiased estimators and efficient esti-
mators have direct asymptotic analogues of interest. An estimator is asymptotically unbiased if the bias goes
to zero for all £ as the amount of data goes to infinity. An estimator is asymptotically efficient if it is
asymptotically unbiased and if

M(E)E{(E - )(E - E)*[e} » 1 (4.2-28)

as the amount of data approaches infinity. Equation (4.2-28) is an asymptotic expression for equality in
Equation (4.2-20).

One important asymptotic property has no finite data analogue. This is the notion of consistency. An
estimator is consistent if £ » £ as the amount of data goes to infinity. For strong consistency, the con-
vergence is required to be with probability one. Note that strong consistency is defined in terms of the
convergence of individual realizations of the estimates, unlike the bias, variance, and other properties which
are defined in terms of average properties (expected values).

Consistency is a stronger property than asymptotic unbiasedness; that is, all consistent estimators are
asymptotically unbiased. This is a basic convergence result—that convergence with probability one implies
convergence in distribution (and thus, specifically, convergence in mean). We refer the reader to Lipster and
Shiryayev (1977), Cramér (1946), Goodwin and Payne (1977), Zacks (1971), and Mehra and Lainiotis (1976) for
this and other results on consistency. Results on consistency tend to involve careful mathematical arguments
relating to different types of convergence.

We will not delve deeply into asymptotic properties such as consistency in this book. We generally feel
that asymptotic properties, although theoretically intriguing, should be played down in practical application.
Application of infinite-time results to finite data is an approximation, one that is sometimes useful, but
sometimes gives compietely misleading conclusions (see Section 8.2). The inconsistency should be evident in
books that spend copious time arguing fine points of distinction between different kinds of convergence and
then pass off application to finite data with cursory allusions to using large data samples.

Although we de-emphasize the "rigorous" treatment of asymptotic properties, some asymptotic results are
crucial to practical implementation. This is not because of any improved rigor of the asymptotic results, but
because the asymptotic results are often simpler, sometimes enough simpler to make the critical difference in
usability. This is our primary use of asymptotic results: as simplifying approximations to the finite-time
results. Introduction of complicated convergence arguments hides this essential role. The approximations work
well in many cases and, as with most approximations, fail in some situations. Our emphasis in asymptotic
results will center on justifying when they are appropriate and understanding when they fail.

4.3 COMMON ESTIMATORS
This section will define some of the commonly used general types of estimators. The list is far from
complete; we mention only those estimators that will be used in this book. We also present a few general

results characterizing the estimators.

4.3.1 4 posteriori Expected Value

One of the most natural estimates is the a posteriori expected value. This estimate is defined as the
mean of the posterior distribution.

£(2) = E(e|2} = j%p(alZ)dlél
j%p(zla)p(a)dlzl
fp(ZI.s)p(a)dlzl

This estimator requires that p{£), the prior density of &, be known.

(4.3-1)

4.3.2 Bayesian Minimum Risk

Bayesian optimality was defined in Section 4.2.4. Any estimator which minimizes the a posteriori
expected value of the loss function is a Bayesian minimum risk estimator. (In general, there can be more than
one such estimator for a given problem.) The prior distribution of £ must be known to define Bayesian
estimators.

Theorem 4.3-1 The a posteriori expected value (Section 4.3.1) is the unique
Bayesian minimum risk estimator for the loss function

IHE,E) = (5 - E)*R(E - &) (4.3-2)
where R is any positive definite symmetric matrix.
Proof A Bayesian minimum risk estimator must minimize

E{J]2} = E{(g - E(2))*R(g - E(2))|D} (4.3-3)
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Since R is symmetric, the gradient of this function is

VAE([2} = -2E(R(E - E(I)Y 13+ (4.3-4)

Setting this expression to zero gives
0= RE{£ - &(2)]2} = RIEL£]Z} - £(Z)] {4.3-5)
Therefore
£(z) = Ete|n) (4.3-6)
is the unique stationary point of E{J|Z}. The second gradient is
VEEW[Z) = 2R > 0 (4.3-7)
so the stationary point is the global minimum.

Theorem (4.3-1) applies only for the guadratic loss function of Equation (4.3-2). The following very
similar theorem applies to a much broader class of loss functions, but requires the assumption that p(£|Z) is
symmetric about its mean. Theorem (4.3-1) makes no assumptions about p(£|Z) except that it has finite mean
and variance.

Theorem 4.3-2 Assume that p(g|Z) is symmetric about its mean for each Z; i.e.,
pglz(i(l) +E]Z) = pg|Z(E(Z) - £]7) (4.3-8)

where Z(Z) is the expected value of & given Z. Then the a posteriori expected value is the
unique Bayesian minimum risk estimator for any loss function of the form

Ie.8) = 9,k - £) (4.3-9)
where J, s symmetric about 0 and is strictly convex.
Proof We need to demonstrate that
D(a) = E{J(c,E(Z) +a|Z} - EQI{&,E(D)|2} > O (4.3-10)
for all a # 0. Using Equation {4.3-9) and the definition of expectation
0(a) = j$(€ll)[dl(€ - E(2) - a) - 9, (e - E(2))1d]g] (4.3-11)

Because of the symmetry of p(£|Z), we can replace the integral in Equa-
tion (4.3-11) by an integral over the region

S = {g:(¢ - E(1),a) 2 0} (4.3-12)
giving
Dla) - j; PlEIZ)0, (6 - BD) - 2) + 3, (E(2) - & - &)
-3, (e - E(2)) - 3, (E(7) - &)1d|¢g] (4.3-13)
Using the symmetry of J, gives

b(a) js' P(e|2)[0, (& - E(Z) - @) + 9, (5 - E(2) + a)

- 23,(g - E(2)1d|g] (4.3-14)
By the strict convexity of J,
J,(e - E(2) - a) + 9. (g - E(2) +a) > 29, (5 - E(Z)) (4.3-15)

for all a # 0. Therefore D{a) >0 for all a # 0 as we desired to show.
Note that if J, 1is convex, but not strictly convex, theorem (4.3-2) still holds except for the unique-
ness. Theorems (4.3-1) and (4.3-2) are two of the basic results in the theory of estimation. They motivate
the use of a posteriori expected value estimators.

4.3.3 Maximum a posteriori Probability

The maximum a posteriori probability (MAP) estimate is defined as the mode of the posterior distribution
(i.e., the value of & which maximizes the posterior density function). If the distribution is not unimodal,
the MAP estimate may not be unique. As with the previously discussed estimators, the prior distribution of
£ must be known in order to define the MAP estimate.

The MAP estimate is equal to the a posteriori expected value (and thus to the Bayesian minimum risk for
loss functions meeting the conditions of Theorem (4.3-2)) if the posterior distribution is symmetric about its
mean and unimodal, since the mode and the mean of such distributions are equal. For nonsymmetric distribu-
tions, this equality does not hold.
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The MAP estimate is generally much easier to calculate than the a posteriori expected value. The
a posteriori expected value is (from Equation (4.3-1))

 [aop@ael
87 =
fp(z)la)p(a)dlal

This calculation requires the evaluation of two integrals over =. The MAP estimate requires the maxi-
mization of

(4.3-16)

p(zlz) = RIS (4.3-17)

with respect to &. The p(Z) is not a function of ¢, so the MAP estimate can also be obtained by
£(2) = arg max p{Z|£)p(&) (4.3-18)
3
The "arg max" notation indicates that £ is the value of ¢ that maximizes the density function p(Zie)ple).
The maximization in Equation (4.3-18) is generally much simpler than the integrations in Equation (4.3-16).

4.3.4 Maximum Likelihood

The previous estimators have all required that the prior distribution of £ be known. When ¢ is not
random or when its distribution is not known, there are far fewer reasonable estimators to choose from. Maxi-
mum likelihood estimators are the only type that we will discuss.

The maximum }ikelihood estimate is defined as the value of & which maximizes the likelihood functional
p(Z|£); in other words,

£(2) = arg max p(Z|g) (4.3-19)
£

The maximum 1ikelihood estimator is closely related to the MAP estimator. The MAP estimator maximizes p(g|Z);
heuristically we could say that the MAP estimator selects the most probable value of ¢, given the data. The
maximum 1ikelihcod estimator maximizes p{(Z|e)}; i.e., it selects the value of &£ which makes the observed data
most plausible. Although these may sound like two statements of the same concept, there are crucial differ-
ences. One of the most central differences is that maximum Tikelihood is defined whether or not the prior
distributjon of & is known.

Comparing Equation (4.3-18) with Equation {4.3-19) reveals that the maximum likelihood estimate is iden-
tical to the MAP estimate if p(g) is a constant. If the parameter space = has finite size, this implies
that p(g) is the uniform distribution. For infinite &, such as RM, there are no uniform distributions, so
a strict equivalence cannot be established. If we relax our definition of a probability distribution to allow
arbitrary density functions which need not integrate to 1 (sometimes called generalized probabilities), the
equivalence can be established for any E. Alternately, the uniform distribution for infinite size = can be
viewed as a limiting case of distributions with variance going to infinity (less and less prior certainty about
the value of ).

The maximum likelihood estimator places no preference on any value of & over any other value of &; the
estimate is solely a function of the data. The MAP estimate, on the other hand, considers both the data and
the preference defined by the prior distribution.

Maximum 1ikelihood estimators have many interesting properties, which we will cover later. One of the
most basic is given by the following theorem:

Theorem 4.3-3 If an efficient estimator exists for a problem, that estimator
is a maximum 1ikelihood estimator.

Proof (This proof requires the use of the full notation for probability
density functions to avoid confusion.) Assume that £(Z) is any efficient
estimator. An estimator will be efficient if and only if equality holds

in lemma (4.2-1). Equality holds if and only if X = AY in Equation (4.2-6).
Substituting for A from Equation (4.2-8) gives

X = E{XY*}E{YY*}"1Y (4.3-20)

Substituting for X and Y as in the proof of the Cramer-Rao bound, and using
Equations (4.2-18) and (4.2-19) gives

£ - = “lgk -
E(z) -g=1[1+ ng(i)]M(g) v} oon szE(ZIE) (4.3-21)
Efficient estimators must be unbiased, so b{g) is zero and
£ - = ~lg% _
£(2) - & = M(e)TE an py(2]€) (4.3-22)

For an efficient estimator, Equation (4.3-22) must hold for all values of Z
and £. In particular, for each Z, the equation must hold for £ = £(Z).
The left-hand side is then zero, so we must have

Vg n pZ]E(Z|E(Z)) =0 (4.3-23)
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The estimate js thus at a stationary point of the Tikelihood functional.
Taking the gradient of Equation (4.3-22)

-1 = -1g2 - -1 ~lgw -
1= M(e)7'7 n py (Z]€) - M(e)*[v M(e)IM(e) ™y an py) (2]E) (4.3-24)
Evaluating this at ¢ = £(Z), and using Equation (4.3-23) gives
- = £ “lg2 S -
I = ME@)Tvg an g (1]E(2) (4.3-24)

Since M s positive definite, the stationary point is a Yocal maximum.

In fact, it is the only local maximum, because a local maximum at any point
other than ¢ = £(Z) would violate Equation (4.3-22). The requirement for
fpzlg(l|g)dlzl to be finite implies that pzi¢(Z]¢) ~ Q0 as &Z& )
that the local maximum will be a global maximim. Therefore £(Z) is a
maximum 1ikelihood estimator.

Corollary Al1 efficient estimators for a problem are equivalent (i.e., if
an efficient estimator exists, it is unique).

This theorem and its corollary are not as useful as they might seem at first glance, because efficient
estimators do not exist for many problems. Therefore, it is not always true that a maximum 1ikelihood esti~
mator is efficient. The theorem does apply to some simple problems, however, and motivates the more widely
applicable asymptotic results which will be discussed later.

Maximum 1ikelihood estimates have the following natural invariance property: let £ be the maximum
likelihood estimate of £; then f(£) is the maximum 1ikelihood estimate of f(&) for any function f. The
proof of this statement is trivial if f is invertible. Let Lg(g,Z) be the 1ikelihood functional of ¢ for
a given Z. Define

x = f(g) (4.3-26)
Then the likelihood function of x is
Lx(x,Z) = Lg(f"(x),z) (4.3-27)

This is the crucial equation. By definition, the left-hand side is maximized by x = X, and the right-hand
side is maximized by f~'(x) = €. Therefore

X = f(£) {4.3-28)

The extension to noninvertible f 1is straightforward—simply realize that f !(x) is a set of values, rather
than a single value. The same argument then still holds, regarding Ly(x,Z) as a one-to-many function (set-
valued function).

Finally, let us emphasize that, although maximum 1ikelihood estimates are formally identical to MAP esti-
mates with uniform prior distributions, there i3 a basic theoretical difference in interpretation. Maximum
1ikelihood makes no statements about distributions of £, prior or posterior. Stating that a parameter has a
uniform prior distribution is drastically different from saying that we have no information about the param-
eter. Several classic "paradoxes" of probability theory resulted from ignoring this difference. The para-
doxes arise in transformations of variable. Let a scalar & have a uniform prior distribution, and let f
be any continuous invertible function. Then, by Equation (3.4-1), x = f(£) has the density function

Pe(x) = p (F2 O 72 (0) | (4.3-29)

which is not a uniform distribution on x (unless f is linear). Thus if we say that there is no prior
information (uniform distribution) about £, then this gives us prior information (nonuniform distribution)
about x, and vice versa. This apparent paradox results from equating a uniform distribution with the idea
of "no information."

Therefore, although we can formally derive the equations for maximum likelihood estimators by substituting
uniform prior distributions in the equations for MAP estimators, we must avoid misinterpretations. Fisher
(1921, p. 326) discussed this subject at length:

There would be no need to emphasize the baseless character of the assumptions
made under the titles of inverse probability and BAYES' Theorem in view of

the decisive criticism to which they have been exposed....I must indeed plead
guilty in my original statement of the Method of Maximum Likelihood (9) to
having based my argument upon the principle of inverse probability; in the

same paper, it is true, I emphasized the fact that such inverse probabilities
were relative only. That is to say, that while one might speak of one value

of p as having an inverse probability three times that of another value of p,
we might on no account introduce the differential element dp, so as to be

able to say that it was three times as probable that p should Tie in one
rather than the other of two equal elements. Upon consideration, therefore, I
perceive that the word probability is wrongly used in such a connection:
probability is a ratio of frequencies, and about the frequencies of such values
we can know nothing whatever. We must return to the actual fact that one value
of p, of the frequency of which we know nothing, would yield the observed
result three times as frequently as would another value of p. If we need a
word to characterize this relative property of different values of p, I suggest
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that we may speak without confusion of the likelihood of one value of »p
being thrice the Tikelihood of another, bearing always in mind that Tikeli-
hood is not here used loosely as a synonym of probability, but simply to
express the relative frequencies with which such values of the hypothetical
quantity p would in fact yield the observed sample.

4.3.5
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CHAPTER 5

5.0 THE STATIC ESTIMATION PROBLEM

In this chapter begins the application of the general types of estimators defined in Chapter 4 to
specific problems. The problems discussed in this chapter are static estimation problems; that is, problems
where time is not explicitly involved. Subsequent chapters on dynamic systems draw heavily on these static
results. Our treatment is far from complete; it is easy to spend an entire book on static estimation alone
(Sorenson, 1980). The material presented here was selected largely on the basis of relevance to dynamic
systems.

We concentrate primarily on Tinear systems with additive Gaussian noise, where there are simple, closed-
form solutions. We also cover nonlinear systems with additive Gaussian noise, which will prove of major
importance in Chapter 8. Non-Gaussian and nonadditive nojse are mentioned only briefly, except for the special
problem of estimation of variance.

We will initially treat nonsingular problems, where we assume that all relevant distributions have density
functions. The understanding and handling of singular and ill-conditioned problems then receive special
attention. Singularities and ill-conditioning are crucial issues in practical application, but are insuffi-
ciently treated in much of the current literature. We also discuss partitioning of estimation problems, an
important technique for simplifying the computational task and treating some singularities.

The general form of a static system model is
Z=1(s,U,0) (5.0-1)

We apply a known specific input U (or a set of inputs) to the system, and measure the response Z. The
vector « 1is a random vector contaminating the measured system response. We desire to estimate the value
of «&.

The estimators discussed in Chapter 4 require knowledge of the conditional distribution of Z given ¢
and U. We assume, for now, that the distribution is nonsingular, with density p(Z|g,U). If & is con-
sidered random, you must know the joint density p(Z,£|U). In some simple cases, these densities might be
given directly, in which case Equation (5.0-1) is not necessary; the estimators of Chapter 4 apply directly.
More typically, p(Z|g,U) is a complicated density which is derived from Equation (5.0-1) and plu|g,U). It is
often reasonable to assume quite simple distributions for w, independent of & and U. In this chapter, we
will look at several specific cases.

5.1 LINEAR SYSTEMS WITH ADDITIVE GAUSSIAN NOISE

The simplest and most classic results are obtained for linear static systems with additive Gaussian noise.
The system equations are assumed to have the form

Z=C(U)e + D) + G(U)w (5.1-1)
For any particular U, Z 1is a linear combination of &, w, and a constant vector. Note that there are no
assumptions about Tinearity with respect to U; the functions C, D, and G can be arbitrarily complicated.
Throughout this section, we omit the explicit dependence on U from the notation. Similarly, all distribu-
tions and expectations are implicitly understood to be conditioned on U.

The random noise vector w is assumed to be Gaussian and independent of . By convention, we will
define the mean of « to be 0, and the covariance to be identity. This convention does not limit the gener-
ality of Equation (5.1-1), for if « has a mean m and a finite covariance FF*, we can define G, = GF
and D, =D+ m to obtain

Z=2Ct+D, + Gu, {5.1-2)
where w, has zero mean and identity covariance.

When & s considered as random, we will assume that its marginal (prior) distribution is Gaussian with
mean mg and covarijance P.

pl6) = 1268177 exalt £z - m 49725 - m)) (5.1-3)

Equation (5.1-3) assumes that P s nonsingular. We will discuss the implications and handling of singular
cases later.

5.1.1 Joint Distribution of Z and ¢

Several distributions which can be derived from Equation {5.1-1) will be required in order to analyze this
system. Let us first consider p(Z|c), the conditional density of Z given £. This distribution is defined
whether ¢ is random or not. If ¢ 1is given, then Equation (5.1-1) is simply the sum of a constant vector
and a constant matrix times a Gaussian vector. Using the properties of Gaussian distributions discussed in
Chapter 3, we see that the conditional distribution of Z given £ is Gaussian with mean and covariance.

E{Z|g} = C¢ + D (5.1-4)
cov{Z|g} = GG* (5.1-5)
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Thus, assuming that GG* is nonsingular,
p(Zlg) = IZnGG*l'l/2 exp{- % (Z - Cg - DY*{G6*)~*(Z - Cg - D)} (5.1-6)
If ¢ 1is random, with marginal density given by Equation {5.1-3), we can also meaningfully define the
gging.distribution of 7 and £, the conditional distribution of ¢ given Z, and the marginal distribution

For the marginal distribution of Z, note that Equation (5.1-1) is a linear combination of independent
Gaussian vectors. Therefore Z is Gaussian with mean and covariance

E{Z} = CmE +D (5.1-7)
cov(Z) = CPC* + GG* (5.1-8)

For the joint distribution of ¢ and Z, we now require the cross-correlation
E{[Z - E(Z)](t - E(g)]*} = CP (5.1-9)

The joint distribution of £ and Z is thus Gaussian with mean and covariance

£ m.
gl- -] =1--% - (5.1-10)
/A Cm, + D
£
£ P pc*
covl- -y =|--|----- (5.1-11)
z CP | CPC* + GG*

Note that this joint distribution could also be derived by multiplying Equations (5.1-3) and (5.1-6) according
to Bayes rule. That derivation arrives at the same results for Equations (5.1-10) and (5.1-11), but is much
more tedious.

Finally, we can derive the conditional distribution of £ given Z (the posterior distribution of g) from
the joint distribution of ¢ and Z. Applying Theorem (3.5-9) to Equations (5.1-10) and (5.1-11), we see that
the conditional distribution of £ given Z is Gaussian with mean and covariance

E{g|Z} = me + PC*(CPC* + GG*)™'(Z - (’,m‘g - D) (5.1-12)

cov{£fZ) = P - PC*(CPC* + GG*)"1CP {5.1-13)

Equations (5.1-12) and (5.1-13) assume that CPC* + GG* is nonsingular. If this matrix is singular, the
problem is i11-posed and should be restated. We will discuss the singular case later.

Assuming that P, GG*, and (C*{GG*)™*C + P~?) are nonsingular, we can use the matrix inversion lemmas,
(Temmas (A.1-3) and (A.1-4)), to put Equations (5.1-12) and (5.1-13) into forms that will prove intuitively
useful.

Ele|z) = m, + (C*(GE*)7PC + P~3)7iC*(66%) 7} (Z - Cm - D) (5.1-14)

cov(g|Z) = (C*(GG*)7*C + P7Y)7? (5.1-15)

We will have much occasion to contrast the form of Equations (5.1-12) and {5.1-13) with the form of
Equations (5.1-14) and (5.1-15). We will call Equations (5.1-12) and (5.1-13) the covariance form because they
are in terms of the uninverted covariances P and GG*. Equations (5.1-14) and (5.1-15) are called the infor-
mation form because they are in terms of the inverses p-1 and (G6*)~*, which are related to the amount of
information. (The larger the covariance, the less information you have, and vice versa.) Equation (5.1-15)
has an interpretation as addition of information: P~ 1is the amount of prior information about ¢, and
C*(GG*)~1C is the amount of information in the measurement; the total information after the measurement is
the sum of these two terms.

5.1.2 A Posteriori Estimators

Let us first examine the three types of estimators that are based on the posterior distribution p{s]2).
These three types of estimators are a posteriori expected value, maximum a posteriori probability, and
Bayesian minimum risk.

We previously derived the expression for the a posteriori expected value in the process of defining the
posterior distribution. Either the covariance or information form can be used. We will use the information
form because it ties in with other approaches as will be seen below. The a posteriori expected value
estimator is thus

£=m + (C*GG*)~1C + P~1)~iC*(6G*)"M(Z - CmE - D) (5.1-16)

The maximum a posteriori probability estimate is equal to the a posteriori expected value because the
posterior distribution is Gaussian (and thus unimodal and symmetric about its mean). This fact suggests an
alternate derivation of Equation (5.1-16) which is quite enlightening. To find the maximum point of the
posterior distribution of ¢ given Z, write
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an p(g|Z) = an p(Z|g) + an p(g) - on p(Z) (5.1-17)

Expanding this equation using Equations (5.1-3) and (5.1-6) gives

en p(e}Z) = - %»(Z - Cg - D)*(GG*)"*(Z - C& - D) - %-(g - ma)*P'l(g - mg) +a(Z) (5.1-18)

where a(Z) is a function of Z only. Equation (5.1-18) shows the problem in its "least squares" form. We
are attempting to choose ¢ to minimize (g - mg) and (Z - C& - D). The matrices P! and (GG*)~! are
weightings used in the cost functions. The larger the value of (GG*)~!, the more importance is placed on
minimizing (Z - C¢ - D), and vice versa.

Obtain the estimate £ by setting the gradient of Equation (5.1-18) to zero, as suggested by Equa-
tion {3.5-17).

0 = C*(Ge*)7H(z - €& - D) - PTH(E - m) (5.1-19)
Write this as
0 = C*(66*)"*(Z - Crng - D) - PTHE - mg) - C*(GG*)"*C(E - mg) (5.1-20)
and the solution is
£ = m, + (C*(GG*)~1C + P~1)71C*(GG*)™(Z - Cmg - D) (5.1-21)

assuming that the inverses exist. For Gaussian distributions, Equation {3.5-18) gives the covariance as

cov(elZ) = —[Vg gen p(£]2)37Y = (C(GG*)7iC + p71)71 (5.1-22)

Note that the second gradient is negative definite (and the covariance positive definite), verifying that the
solution is a maximum of the posterior probability density function. This derivation does not require the use
of matrix inversion lemmas, or the expression from Chapter 3 for the Gaussian conditional distribution. For
more complicated problems, such as conditional distributions of N jointly Gaussian vectors, the alternate
derivation as in Equations (5.1-17) to (5.1-22) is much easier than the straightforward derivation as in
Equations {5.1-10) to (5.1-15).

Because of the symmetry of the posterior distribution, the Bayesian optimal estimate is also equal to
the a posteriori expected value estimate if the Bayes loss function meets the criteria of Theorem (4.3-1).

We will now examine the statistical properties of the estimator given by Equation (5.1-16). Since the
estimator is a linear function of Z, the bias is easy to compute.

b(g) = E{E|E} - &
E(m, + (C*(66%)7'C + P=1)"3C*(66%) (2 - Cm, - D)€} - ¢

It

fn

m, + (C+(66*)7IC + P72)2CH(66%) MECZ[¢) - Omg - O] - ¢

me + (C*(GG*)~C + P~1)7'C*(GG*)"*(Ct + D - Cmg -D)-¢

[I - (C*(GG*)~1C + P'l)'IC*(GG*)'IC](mg - ) (5.1-23)

The estimator is biased for all finite nonsingular P and GG*. The scalar case gives some insight into this
bias. If ¢ is scalar, the factor in brackets in Equation (5.1-23) lies between 0 and 1. As GG* decreases
and/or P increases, the factor approaches 0, as does the bias. In this case, the estimator obtains less
information from the initial guess of ¢ (which has large covariance), and more information from the measure-
ment (which has small covariance). If the situation is reversed, GG* increasing and/or P decreasing, the
bias becomes larger. In this case, the estimator shows an jncreasing predilection to ignore the measured
response and to keep the initial guess of ¢£.

The variance and mean square error are also easy to compute. The variance of & follows directly from
Equations (5.1-16) and (5.1-5):

cov(Elg) = (C*(GG*)7IC + PT1)71C*(GG*) T16G* (GG*) TC(C*(GG*)TIC + PTY) 7!

"

(C*(GG*)~1C + P~1)~1C*(GG*)2C(C*(GG*)™*C + P~*)~* (5.1-24)
The mean square error is then

mse(g) = cov(E|g) + b(e)b(g)* (5.1-25)
which is evaluated using Equations (5.1-23) and (5.1-24).

The most obvious question to ask in relation to Equations (5.1-24) and (5.1-25) 1is how they compare with
other estimators and with the Cramer-Rao bound. Let us evaluate the Cramer-Rao bound. The Fisher information
matrix (Equation (4.2-19)) is easy to compute using Equation (5.1-6):

M = E{C*(GG*)"Y{Z - C¢ - D)(Z - C¢ - D)*(GG*)"1C}
= C*(BG*)~1GG*{GG*)"1C = C*(GG*)~1C (5.1-26)



48 5.1.2
Thus the Cramer-Rao bound for unbjased estimators is
mse(£]g) 2 (C*(GG*)™C)™? (5.1-27)

Note that, for some values of &, the a posteriori expected value estimator has a Tower mean-square error than
the Cramer-Rao bound for unbiased estimators; naturally, this is because the estimator is biased. To compute
the Cramer-Rao bound for an estimator with bias given by Equation (5.1-23), we need to evaluate

I+ vgb(g) = 1 + (C*(GG*)~1C + P~1)71C*(GG*)71C - I
= (C*(GG*)~1C + P™*)"1C*(GG*)C (5.1-28)
The Cramer-Rac bound is then (from Equation (4.2-10))
mse(E]E) 2 (C*(GG*)C + P)7LC*(GG*)IC{C*(GG*)™*C + P7+)~* (5.1-29)

Note that the estimator does not achieve the Cramer-Rao bound except at the single point £ = mg. At every
other point, the second term in Equation (5.1-25) is positive, and the first term is equal to the bound;
therefore, the mse is greater than the bound.

For a single observation, we can say in summary that the a posteriort estimator is optimal Bayesian for
a large class of loss functions, but it is biased and does not achieve the Cramer-Rao lower bound. It remains
to investigate the asymptotic properties. The asymptotic behavior of estimators for static systems is defined
in terms of N independent repetitions of the experiment, where N approaches infinity. We must first define
the application of the a posteriori estimator to repeated experiments.

Assume that the system model is given by Equation (5.1-1), with £ distributed according to Equa-
tion (5.1-3). Perform N experiments U,...Uy. (It does not matter whether the U;j are distinct.) The
corresponding system matrices are Ci, Dj, and GiGia and the measurements are Z4j. The random noise wj 1is an
independent, zero-mean, identity covariance, Gaussian vector for each 1i. The maximum a posteriori estimate of
¢ is given by
N "N
E = * *)~1 -1 * -1 - - -
£ m, + ji: Ci(GiGi) Ci + P :Z: Ci(Gie?) (Zi Cimg Di) (5.1-30)

-i=1 'i=1
assuming that the inverses exist.

The asymptotic properties are defined for repetition of the same experiment, so we do not need the full
generality of Equation (5.1-30). If Uj = Uj, Cj = Cj, Dj = Dj, and Gj = 63 for all i and j, Equa-
tion (5.1-30) can be written
N
£ = m, + [NC*(66¥)73C + P~2]-1C*(66%) Z (z; - tm, - D) (5.1-31)

i=1

( Compu%e the bias, covariance, and mse of this estimate in the same manner as Equations {5.1-23)
to {5.1-25):

b(g) = [1 - (NC*(66*)™C + P™2)7NC*(6G*) *C1(m, - &) {(5.1-32)
cov(E|g) = [NC*(GG*)~1C + P~1] INC*{GG*) 2C[NC*(GG*)*C + P=1]~% (5.1-33)
mse{Z|g) = cov(£]g) + b{E)b(e)* (5.1-34)

The Cramer-Rao bound for unbiased estimators is

mse(E|£) 2 (NC*(GG*)™*C)™* (5.1-35)
As N increases, Equation {5.1-32) goes to zero, so the estimator is asymptotically unbiased. The effect of
increasing N s exactly comparable to increasing (GG*)~'; as we take more and better quality measurements,
the estimator depends more heavily on the measurements and less on its initial guess.

The estimator is also asymptotically efficient as defined by Equation (4.2-28) because

NC*(6G*)™*C cov(E|E) -1 (5.1-36)
NC*(GG*)™1C b(g)b(g)* — O (5.1-37)
N

5.1.3 Maximum Likelihood Estimator

The derivation of the expression for the maximum likelihood estimator is similar * the derivation of the
maximum a posteriori probability estimator done in Equations (5.1-17) to (5.1-22). only difference is
that instead of &n p(g|Z), we maximize

i p(z]e) = - & (Z - C& - D)*(66%)7H(Z - Ce - D) + a(2) (5.1-38)



5.1.3 49

The only relevant difference between Equation (5.1-38) and Equation (5.1-18) is the inclusion of the term based
on the prior distribution of & in Equation (5.1-18). (The a(z) are also different, but this is of no con-
sequence at the moment.) The maximum likelihood estimate does not make use of the prior distribution; indeed
it does not require that such a distribution exist. We will see that many of the MLE results are equal to the
MAP results with the terms from the prior distribution omitted.
Find the maximum point of Equation (5.1-38) by setting the gradient to zero.
0 = C*(6G*)"*(Z - CE - D) (5.1-39)

The solution, assuming that C*(GG*)"'C is nonsingular, is given by

£ = (C*(GG*)™*C) IC*(GG*)"*(Z - D) (5.1-40)
This is the same form as that of the MAP estimate, Equation (5.1-21), with P™> set to zero.

N A particularly simple case occurs when C =1 and D = 0. In this event, Equation (5.1-40) reduces to
g =1

Note that the expression (C*(GG*)71C)7'C*(66*)~! is a left-inverse of C; that is
[(C*(GG*)~1C) 2 C*(6G*) "2 ]C = 1 (5.1-41)

We can view the estimator given by Equation (5.1-40) as a pseudo-inverse of the system given by Equa-
tion (5.1-1). Using both equations, write

13

(C*(GG*)"1C)"2C*(6G*)"*(Ct + D + Gw - D)

n

g + (C*(GG*)1C)1C*(66*) 6w

g + (C*(GG*)71C)TIC*G* 1w (5.1-42)

Although we must use Equation (5.1-40) to compute £ because & and w are not known, Equation (5.1-42)
is useful in analyzing and understanding the benhavior of the estimator. One interesting point is immediately
obvious from Equation (5.1-42): the estimate is simply the sum of the true value plus the effect of the con-
taminating noise w. For the particular realization w = 0, the estimate is exactly equal to the true value.
This property, which is not shared by the a posteriori estimators, is closely related to the bias. Indeed,
the bias of the maximum likelihood estimator is immediately evident from Equation (5.1-42).

b(g) = E{£]e} - £ =10 (5.1-43)

The maximum likelihood estimate is thus unbiased. Note that Equation (5.1-32) for the MAP bias gives the same
result if we substitute 0 for P71,

Since the estimator is unbiased, the covariance and mean square error are equal. Using Equation (5.1-42),
they are given by

1

cov(E|g) = mse(E]g) = (C*(G6*)~*C)*C*G* 26 *C(C*(GG*)7*C)™"
(c*(66*)"1C)™t (5.1-44)

]

We can g]so obtain this result from Equations (5.1-33) and (5.1-34) for the MAP estimator by substituting 0
for P™°.

We previously computed the Cramer-Rao bound for unbiased estimators for this problem (Equation 5.1-27)).
The mean square error of the maximum likelihood estimator js exactly equal to the Cramer-Rao bound. The maxi-
mum 1ikelihood estimator is thus efficient and is, therefore, a minimum variance unbiased estimator. The
maximum 1ikelihood estimator is not, in general, Bayesian optimal. Bayesian optimality may not even be
defined, since £ need not be random.

The MLE results for repeated experiments can be obtained from the corresponding MAP equations by substi-
tuting zero for p~! and me . We will not repeat these equations here.

5.1.4 Comparison of Estimators

We have seen that the maximum likelihood estimator is unbiased and efficient, whereas the a posteriori
estimators are only asymptotically unbiased and efficient. On the other hand, the a posteriori estimators are
Bayesian optimal for a large class of loss functions. Thus neither estimator emerges as an unchallenged
favorite. The reader might reasonably expect some guidance as to which estimator to choose for a given
problem.

The roles of the two estimators are actually quite distinct and well-defined. The maximum 1ikelihood
estimator does the best possible job (in the sense of minimum mean square error) of estimating the value of ¢
based on the measurements alone, without prejudice (bias) from any preconceived guess about the value. The
maximum 1ikelihood estimator is thus the obvious choice when we have no prior informatjon. Having no prior
information is analogous to having a prior distribution with infinite variance; i.e., P™* = 0. In this regard,
examine Equation (5.1-16) for the a posteriori estimate as P~ goes to zero. The limit is (assuming that
C*(GG*)"*C is nonsingular)
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me + (C*(G6*)~1C) 1C*(GG*) "1 (Z - Cmg - D)

'l
)

me - (C*(GG**'1C)'1C*(GG*)'1CmE + (C*(GG*)~1C)~*C*(GG*)"*(Z - D)

n

{C*(GG*)~*C) 1C*(G6*)"*(Z - D) (5.1-45)

which is equal to the maximum 1ikelihood estimate. The maximum 1ikelihood estimate is thus a limiting case
of an a posteriori estimator as the variance of the prior distribution approaches infinity.

The a posteriori estimate combines the information from the measurements with the prior information to
obtain the optimal estimate considering both sources. This estimator makes use of more information and thus
can obtain more accurate estimates, on the average. With this improved average accuracy comes a bias in favor
of the prior estimate. If the prior estimate is good, the a posteriori estimate will generally be more accu-
rate than the maximum likelihood estimate. If the prior estimate is poor, the a posteriori estimate will be
poor. The advantages of the a posteriori estimators thus depend heavily on the accuracy of the prior estimate
of the value.

The basic criterion in deciding whether to use an MAP or MLE estimator is whether you want estimates based
only on the current data or based on both the current data and the prior information. The MLE estimate is
based only on the current data, and the MAP estimate js based on both the current data and the prior
distribution.

The distinction between the MLE and MAP estimators often becomes blurred in practical application. The
estimators are closely related in numerical computation, as well as in theory. An MAP estimate can be an
intermediate computational step to obtaining a final MLE estimate, or vice versa. The following paragraphs
describe one of these situations; the other situation is discussed in Section 5.2.2.

It is quite common to have a prior guess of the parameters, but to desire an independent verification of
the value based on the measurements alone. In this case, the maximum Tikelihood estimator is the appropriate
tool in order to make the estimates independent of the initial guess.

A two-step estimation is often the most appropriate to obtain maximum insight into a problem. First, use
the maximum likelihood estimator to obtain the best estimates based on the measurements alone, ignoring any
prior information. Then consider the prior information in order to obtain a final best estimate based on both
the measurements and the prior information. By this two-step approach, we can see where the information is
coming from— the prior distribution, the measurements, or both sources. The two-step approach also allows the
freedom to independently choose the methodology for each step. For instance, we might desire to use a maximum
1ikelihood estimator for obtaining the estimates based on the measurements, but use engineering judgment to
establish the best compromise between the prior expectations and the maximum likelihood results. This is often
the best approach because it may be difficult to completely and accurately characterize the prior information
in terms of a specific probability distribution. The prior information often includes heuristic factors such
as the engineer's judgment of what would constitute reasonable results.

The theory of sufficient statistics (Ferguson, 1967; Cramer, 1946; and Fisher, 1921) is useful in the
two-step approach if we desire to use statistical techniques for both steps. The maximum likelihood estimate
and its covariance form a sufficient statistic for this problem. Although we will not go into detail here,
if we know the maximum 1likelihoo